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Unofficial Texinfo Format

This is the second edition SICP book, from Unaofficial Texinfo Format.

You are probably reading it in an Info hypertext browser, such as the Info
mode of Emacs. You might alternatively be reading it TgX-formatted on your
screen or printer, though that would be silly. And, if printed, expensive.

The freely-distributed official HTML-and-GIF format was first converted
personally to Unofficial Texinfo Format (UTF) version 1 by Lytha Ayth during
a long Emacs lovefest weekend in April, 2001.

The UTF is easier to search than the HTML format. It is also much more
accessible to people running on modest computers, such as donated '386-
based PCs. A 386 can, in theory, run Linux, Emacs and a Scheme interpreter
simultaneously, but most 386s probably can’t also run both Netscape and
the necessary X Window System without prematurely introducing budding
young underfunded hackers to the concept of thrashing. UTF can also fit
uncompressed on a 1.44MB floppy diskette, which may come in handy for
installing UTF on PCs that do not have Internet or LAN access.

The Texinfo conversion has been a straight transliteration, to the extent
possible. Like the TgX-to-HTML conversion, this was not without some intro-
duction of breakage. In the case of Unofficial Texinfo Format, figures have
suffered an amateurish resurrection of the lost art of ASCIL. Also, it’s quite
possible that some errors of ambiguity were introduced during the conver-
sion of some of the copious superscripts (') and subscripts (_°). Divining
which has been left as an exercise to the reader. But at least we don’t put
our brave astronauts at risk by encoding the greater-than-or-equal symbol
as<u>&gt;</u>.

If you modify ‘sicp.texi’ to correct errors or improve the ASCII art, then
update the@set utfversion 2.andresraba? line to reflect your delta. For
example, if you started with Lytha’s version 1, and your name is Bob, then
you could name your successive versions 1.bobl, 1.bob2, ... 1.bobn. Also
update utfversiondate. If you want to distribute your version on the Web,
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then embedding the string “sicp.texi” somewhere in the file or Web page will
make it easier for people to find with Web search engines.

It is believed that the Unofficial Texinfo Format is in keeping with the spirit
of the graciously freely-distributed HTML version. But you never know when
someone’s armada of lawyers might need something to do, and get their
shorts all in a knot over some benign little thing, so think twice before you
use your full name or distribute Info, DVI, PostScript, or PDF formats that
might embed your account or machine name.

Peath,
Lytha Ayth

Addendum: See also the SICP video lectures by Abelson and Sussman:
at MIT CSAIL or at MIT OCW.

Second Addendum: Above is the original introduction to the UTF from
2001. Ten years later, UTF has been transformed: mathematical symbols
and formulas are properly typeset, and figures drawn in vector graphics.
The original text formulas and ASCII art figures are still there in the Texinfo
source, but will display only when compiled to Info output. In the dawn
of e-book readers and tablets, reading a PDF on screen is officially not silly
anymore. Enjoy!

A.R, May, 2011


http://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/
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Dedication

This book is dedicated, in respect and admiration, to the spirit that lives in
the computer.

“I think that it’s extraordinarily important that we in computer sci-
ence keep fun in computing. When it started out, it was an awful
lot of fun. Of course, the paying customers got shafted every now
and then, and after a while we began to take their complaints se-
riously. We began to feel as if we really were responsible for the
successful, error-free perfect use of these machines. I don’t think
we are. I think we’re responsible for stretching them, setting them
off in new directions and keeping fun in the house. I hope the field
of computer science never loses its sense of fun. Above all, I hope
we don’t become missionaries. Don'’t feel as if you're Bible sales-
men. The world has too many of those already. What you know
about computing other people will learn. Don'’t feel as if the key to
successful computing is only in your hands. What'’s in your hands,
I think and hope, is intelligence: the ability to see the machine as
more than when you were first led up to it, that you can make it
more.”

—Alan J. Perlis (April 1, 1922 — February 7, 1990)
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Foreword

Educators, generals, dieticians, psychologists and parents program.
Armies, students and some societies are programmed. An assault on
large problems employs a succession of programs, most of which spring
into existence en route. These programs are rife with issues that appear
to be particular to the problem at hand. To appreciate programming
as an intellectual activity in its own right you must turn to computer
programming; you must read and write computer programs—many
of them. It doesn’t matter much what the programs are about or what
applications they serve. What does matter is how well they perform
and how smoothly they fit with other programs in the creation of still
greater programs. The programmer must seek both perfection of part and
adequacy of collection. In this book the use of “program” is focused on the
creation, execution and study of programs written in a dialect of Lisp for
execution on a digital computer. Using Lisp we restrict or limit not what
we may program, but only the notation for our program descriptions.

Our traffic with the subject matter of this book involves us with three foci
of phenomena: the human mind, collections of computer programs and
the computer. Every computer program is a model, hatched in the mind,
of a real or mental process. These processes, arising from human experi-
ence and thought, are huge in number, intricate in detail and at any time
only partially understood. They are modeled to our permanent satisfac-
tion rarely by our computer programs. Thus even though our programs are
carefully handcrafted discrete collections of symbols, mosaics of interlock-
ing functions, they continually evolve: we change them as our perception
of the model deepens, enlarges, generalizes until the model ultimately at-
tains a metastable place within still another model with which we struggle.
The source of the exhilaration associated with computer programming is
the continual unfolding within the mind and on the computer of mecha-
nisms expressed as programs and the explosion of perception they gener-
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ate. If art interprets our dreams, the computer executes them in the guise
of programs!

For all its power, the computer is a harsh taskmaster. Its programs must
be correct, and what we wish to say must be said accurately in every de-
tail. As in every other symbolic activity, we become convinced of program
truth through argument. Lisp itself can be assigned a semantics (another
model, by the way), and if a program’s function can be specified, say, in the
predicate calculus, the proof methods of logic can be used to make an ac-
ceptable correctness argument. Unfortunately, as programs get large and
complicated, as they almost always do, the adequacy, consistency and cor-
rectness of the specifications themselves become open to doubt, so that
complete formal arguments of correctness seldom accompany large pro-
grams. Since large programs grow from small ones, it is crucial that we de-
velop an arsenal of standard program structures of whose correctness we
have become sure—we call them idioms—and learn to combine them into
larger structures using organizational techniques of proven value. These
techniques are treated at length in this book, and understanding them is
essential to participation in the Promethean enterprise called program-
ming. More than anything else, the uncovering and mastery of powerful
organizational techniques accelerates our ability to create large, significant
programs. Conversely, since writing large programs is very taxing, we are
stimulated to invent new methods of reducing the mass of function and
detail to be fitted into large programs.

Unlike programs, computers must obey the laws of physics. If they wish
to perform rapidly—a few nanoseconds per state change—they must trans-
mit electrons only small distances (at most 1% feet). The heat generated by
the huge number of devices so concentrated in space has to be removed.
An exquisite engineering art has been developed balancing between mul-
tiplicity of function and density of devices. In any event, hardware always
operates at a level more primitive than that at which we care to program.
The processes that transform our Lisp programs to “machine” programs
are themselves abstract models which we program. Their study and cre-
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ation give a great deal of insight into the organizational programs asso-
ciated with programming arbitrary models. Of course the computer it-
self can be so modeled. Think of it: the behavior of the smallest physi-
cal switching element is modeled by quantum mechanics described by dif-
ferential equations whose detailed behavior is captured by numerical ap-
proximations represented in computer programs executing on computers
composed of . . .!

It is not merely a matter of tactical convenience to separately identify
the three foci. Even though, as they say, it’s all in the head, this logical
separation induces an acceleration of symbolic traffic between these foci
whose richness, vitality and potential is exceeded in human experience
only by the evolution of life itself. At best, relationships between the foci are
metastable. The computers are never large enough or fast enough. Each
breakthrough in hardware technology leads to more massive programming
enterprises, new organizational principles and an enrichment of abstract
models. Every reader should ask himself periodically “Toward what end,
toward what end?”—but do not ask it too often lest you pass up the fun of
programming for the constipation of bittersweet philosophy.

Among the programs we write, some (but never enough) perform a pre-
cise mathematical function such as sorting or finding the maximum of a
sequence of numbers, determining primality, or finding the square root.
We call such programs algorithms, and a great deal is known of their opti-
mal behavior, particularly with respect to the two important parameters of
execution time and data storage requirements. A programmer should ac-
quire good algorithms and idioms. Even though some programs resist pre-
cise specifications, it is the responsibility of the programmer to estimate,
and always to attempt to improve, their performance.

Lisp is a survivor, having been in use for about a quarter of a century.
Among the active programming languages only Fortran has had a longer
life. Both languages have supported the programming needs of impor-
tant areas of application, Fortran for scientific and engineering compu-
tation and Lisp for artificial intelligence. These two areas continue to be
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important, and their programmers are so devoted to these two languages
that Lisp and Fortran may well continue in active use for at least another
quarter-century.

Lisp changes. The Scheme dialect used in this text has evolved from
the original Lisp and differs from the latter in several important ways,
including static scoping for variable binding and permitting functions
to yield functions as values. In its semantic structure Scheme is as
closely akin to Algol 60 as to early Lisps. Algol 60, never to be an active
language again, lives on in the genes of Scheme and Pascal. It would
be difficult to find two languages that are the communicating coin
of two more different cultures than those gathered around these two
languages. Pascal is for building pyramids—imposing, breathtaking, static
structures built by armies pushing heavy blocks into place. Lisp is for
building organisms—imposing, breathtaking, dynamic structures built
by squads fitting fluctuating myriads of simpler organisms into place.
The organizing principles used are the same in both cases, except for
one extraordinarily important difference: The discretionary exportable
functionality entrusted to the individual Lisp programmer is more than an
order of magnitude greater than that to be found within Pascal enterprises.
Lisp programs inflate libraries with functions whose utility transcends the
application that produced them. The list, Lisp’s native data structure, is
largely responsible for such growth of utility. The simple structure and
natural applicability of lists are reflected in functions that are amazingly
nonidiosyncratic. In Pascal the plethora of declarable data structures
induces a specialization within functions that inhibits and penalizes
casual cooperation. It is better to have 100 functions operate on one data
structure than to have 10 functions operate on 10 data structures. As a
result the pyramid must stand unchanged for a millennium; the organism
must evolve or perish.

To illustrate this difference, compare the treatment of material and exer-
cises within this book with that in any first-course text using Pascal. Do not
labor under the illusion that this is a text digestible at MIT only, peculiar to
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the breed found there. It is precisely what a serious book on programming
Lisp must be, no matter who the student is or where it is used.

Note that this is a text about programming, unlike most Lisp books,
which are used as a preparation for work in artificial intelligence. After all,
the critical programming concerns of software engineering and artificial
intelligence tend to coalesce as the systems under investigation become
larger. This explains why there is such growing interest in Lisp outside of
artificial intelligence.

As one would expect from its goals, artificial intelligence research gener-
ates many significant programming problems. In other programming cul-
tures this spate of problems spawns new languages. Indeed, in any very
large programming task a useful organizing principle is to control and iso-
late traffic within the task modules via the invention of language. These
languages tend to become less primitive as one approaches the bound-
aries of the system where we humans interact most often. As a result, such
systems contain complex language-processing functions replicated many
times. Lisp has such a simple syntax and semantics that parsing can be
treated as an elementary task. Thus parsing technology plays almost no
role in Lisp programs, and the construction of language processors is rarely
an impediment to the rate of growth and change of large Lisp systems. Fi-
nally, it is this very simplicity of syntax and semantics that is responsible for
the burden and freedom borne by all Lisp programmers. No Lisp program
of any size beyond a few lines can be written without being saturated with
discretionary functions. Invent and fit; have fits and reinvent! We toast the
Lisp programmer who pens his thoughts within nests of parentheses.

Alan J. Perlis
New Haven, Connecticut
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Preface to the Second Edition

Is it possible that software is not like anything else, that it is meant
to be discarded: that the whole point is to always see it as a soap
bubble?

—Alan J. Perlis

The material in this book has been the basis of MIT’s entry-level computer
science subject since 1980. We had been teaching this material for four
years when the first edition was published, and twelve more years have
elapsed until the appearance of this second edition. We are pleased that
our work has been widely adopted and incorporated into other texts. We
have seen our students take the ideas and programs in this book and
build them in as the core of new computer systems and languages. In
literal realization of an ancient Talmudic pun, our students have become
our builders. We are lucky to have such capable students and such
accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifica-
tions suggested by our own teaching experience and the comments of col-
leagues at MIT and elsewhere. We have redesigned most of the major pro-
gramming systems in the book, including the generic-arithmetic system,
the interpreters, the register-machine simulator and the compiler; and we
have rewritten all the program examples to ensure that any Scheme im-
plementation conforming to the IEEE Scheme standard (IEEE 1990) will be
able to run the code.

This edition emphasizes several new themes. The most important of
these is the central role played by different approaches to dealing with time
in computational models: objects with state, concurrent programming,
functional programming, lazy evaluation and nondeterministic program-
ming. We have included new sections on concurrency and nondetermin-
ism, and we have tried to integrate this theme throughout the book.

The first edition of the book closely followed the syllabus of our MIT one-
semester subject. With all the new material in the second edition, it will not
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be possible to cover everything in a single semester, so the instructor will
have to pick and choose. In our own teaching, we sometimes skip the sec-
tion on logic programming (Section 4.4), we have students use the register-
machine simulator but we do not cover its implementation (Section 5.2),
and we give only a cursory overview of the compiler (Section 5.5). Even
so, this is still an intense course. Some instructors may wish to cover only
the first three or four chapters, leaving the other material for subsequent
courses.

The World-Wide-Web site http://mitpress.mit.edu/sicp provides
support for users of this book. This includes programs from the book,

sample programming assignments, supplementary materials and down-
loadable implementations of the Scheme dialect of Lisp.


http://mitpress.mit.edu/sicp
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Preface to the First Edition

A computer is like a violin. You can imagine a novice trying first a
phonograph and then a violin. The latter, he says, sounds terrible.
That is the argument we have heard from our humanists and most
of our computer scientists. Computer programs are good, they say,
for particular purposes, but they aren't flexible. Neither is a violin,
or a typewriter, until you learn how to use it.

—Marvin Minsky, “Why Programming Is a Good Medium for Ex-
pressing Poorly-Understood and Sloppily-Formulated Ideas”

“The Structure and Interpretation of Computer Programs” is the entry-level
subject in computer science at the Massachusetts Institute of Technology.
It is required of all students at MIT who major in electrical engineering or in
computer science, as one-fourth of the “common core curriculum,” which
also includes two subjects on circuits and linear systems and a subject on
the design of digital systems. We have been involved in the development of
this subject since 1978, and we have taught this material in its present form
since the fall of 1980 to between 600 and 700 students each year. Most of
these students have had little or no prior formal training in computation,
although many have played with computers a bit and a few have had ex-
tensive programming or hardware-design experience.

Our design of this introductory computer-science subject reflects two
major concerns. First, we want to establish the idea that a computer lan-
guage is not just a way of getting a computer to perform operations but
rather that it is a novel formal medium for expressing ideas about method-
ology. Thus, programs must be written for people to read and only inci-
dentally for machines to execute. Second, we believe that the essential ma-
terial to be addressed by a subject at this level is not the syntax of particu-
lar programming-language constructs, nor clever algorithms for comput-
ing particular functions efficiently, nor even the mathematical analysis of
algorithms and the foundations of computing, but rather the techniques
used to control the intellectual complexity of large software systems.
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Our goal is that students who complete this subject should have a good
feel for the elements of style and the aesthetics of programming. They
should have command of the major techniques for controlling complex-
ity in a large system. They should be capable of reading a 50-page-long
program, if it is written in an exemplary style. They should know what not
to read, and what they need not understand at any moment. They should
feel secure about modifying a program, retaining the spirit and style of the
original author.

These skills are by no means unique to computer programming. The
techniques we teach and draw upon are common to all of engineering de-
sign. We control complexity by building abstractions that hide details when
appropriate. We control complexity by establishing conventional inter-
faces that enable us to construct systems by combining standard, well-
understood pieces in a “mix and match” way. We control complexity by
establishing new languages for describing a design, each of which empha-
sizes particular aspects of the design and deemphasizes others.

Underlying our approach to this subject is our conviction that “computer
science” is not a science and that its significance has little to do with com-
puters. The computer revolution is a revolution in the way we think and in
the way we express what we think. The essence of this change is the emer-
gence of what might best be called procedural epistemology—the study of
the structure of knowledge from an imperative point of view, as opposed
to the more declarative point of view taken by classical mathematical sub-
jects. Mathematics provides a framework for dealing precisely with notions
of “what is.” Computation provides a framework for dealing precisely with
notions of “how to.”

In teaching our material we use a dialect of the programming language
Lisp. We never formally teach the language, because we don’t have to. We
just use it, and students pick it up in a few days. This is one great advan-
tage of Lisp-like languages: They have very few ways of forming compound
expressions, and almost no syntactic structure. All of the formal properties
can be covered in an hour, like the rules of chess. After a short time we
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forget about syntactic details of the language (because there are none) and
get on with the real issues—figuring out what we want to compute, how
we will decompose problems into manageable parts, and how we will work
on the parts. Another advantage of Lisp is that it supports (but does not
enforce) more of the large-scale strategies for modular decomposition of
programs than any other language we know. We can make procedural and
data abstractions, we can use higher-order functions to capture common
patterns of usage, we can model local state using assignment and data mu-
tation, we can link parts of a program with streams and delayed evaluation,
and we can easily implement embedded languages. All of this is embedded
in an interactive environment with excellent support for incremental pro-
gram design, construction, testing and debugging. We thank all the gener-
ations of Lisp wizards, starting with John McCarthy, who have fashioned a
fine tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together
the power and elegance of Lisp and Algol. From Lisp we take the metalin-
guistic power that derives from the simple syntax, the uniform representa-
tion of programs as data objects and the garbage-collected heap-allocated
data. From Algol we take lexical scoping and block structure, which are
gifts from the pioneers of programming-language design who were on the
Algol committee. We wish to cite John Reynolds and Peter Landin for their
insights into the relationship of Church’s A-calculus to the structure of pro-
gramming languages. We also recognize our debt to the mathematicians
who scouted out this territory decades before computers appeared on the
scene. These pioneers include Alonzo Church, Barkley Rosser, Stephen
Kleene and Haskell Curry.
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1 Building Abstractions with Procedures

The acts of the mind, wherein it exerts its power over simple ideas,
are chiefly these three: 1. Combining several simple ideas into one
compound one, and thus all complex ideas are made. 2. The sec-
ond is bringing two ideas, whether simple or complex, together,
and setting them by one another so as to take a view of them at
once, without uniting them into one, by which it gets all its ideas of
relations. 3. The third is separating them from all other ideas that
accompany them in their real existence: this is called abstraction,
and thus all its general ideas are made.

—TJohn Locke, An Essay Concerning Human Understanding (1690)

We are about to study the idea of a computational process. Computational
processes are abstract beings that inhabit computers. As they evolve, pro-
cesses manipulate other abstract things called data. The evolution of a pro-
cess is directed by a pattern of rules called a program. People create pro-
grams to direct processes. In effect, we conjure the spirits of the computer
with our spells.

A computational process is indeed much like a sorcerer’s idea of a spirit.
It cannot be seen or touched. It is not composed of matter at all. However,
it is very real. It can perform intellectual work. It can answer questions.
It can affect the world by disbursing money at a bank or by controlling a
robot arm in a factory. The programs we use to conjure processes are like
a sorcerer’s spells. They are carefully composed from symbolic expressions
in arcane and esoteric programming languages that prescribe the tasks we
want our processes to perform.

A computational process, in a correctly working computer, executes
programs precisely and accurately. Thus, like the sorcerer’s apprentice,
novice programmers must learn to understand and to anticipate the
consequences of their conjuring. Even small errors (usually called bugs or
glitches) in programs can have complex and unanticipated consequences.
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Fortunately, learning to program is considerably less dangerous than
learning sorcery, because the spirits we deal with are conveniently
contained in a secure way. Real-world programming, however, requires
care, expertise and wisdom. A small bug in a computer-aided design
program, for example, can lead to the catastrophic collapse of an airplane
or a dam or the self-destruction of an industrial robot.

Master software engineers have the ability to organize programs so that
they can be reasonably sure that the resulting processes will perform the
tasks intended. They can visualize the behavior of their systems in ad-
vance. They know how to structure programs so that unanticipated prob-
lems do not lead to catastrophic consequences, and when problems do
arise, they can debug their programs. Well-designed computational sys-
tems, like well-designed automobiles or nuclear reactors, are designed in
a modular manner, so that the parts can be constructed, replaced and de-
bugged separately.

Programming in Lisp

We need an appropriate language for describing processes, and we will
use for this purpose the programming language Lisp. Just as our every-
day thoughts are usually expressed in our natural language (such as En-
glish, French, or Japanese), and descriptions of quantitative phenomena
are expressed with mathematical notations, our procedural thoughts will
be expressed in Lisp. Lisp was invented in the late 1950s as a formalism
for reasoning about the use of certain kinds of logical expressions, called
recursion equations, as a model for computation. The language was con-
ceived by John McCarthy and is based on his paper “Recursive Functions
of Symbolic Expressions and Their Computation by Machine” (McCarthy
1960).

Despite its inception as a mathematical formalism, Lisp is a practical
programming language. A Lisp interpreter is a machine that carries out
processes described in the Lisp language. The first Lisp interpreter was im-
plemented by McCarthy with the help of colleagues and students in the
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Artificial Intelligence Group of the MIT Research Laboratory of Electronics
and in the MIT Computation Center.! Lisp, whose name is an acronym for
LISt Processing, was designed to provide symbol-manipulating capabilities
for attacking programming problems such as the symbolic differentiation
and integration of algebraic expressions. It included for this purpose new
data objects known as atoms and lists, which most strikingly set it apart
from all other languages of the period.

Lisp was not the product of a concerted design effort. Instead, it evolved
informally in an experimental manner in response to users’ needs and to
pragmatic implementation considerations. Lisp’s informal evolution has
continued through the years, and the community of Lisp users has tra-
ditionally resisted attempts to promulgate any “official” definition of the
language. This evolution, together with the flexibility and elegance of the
initial conception, has enabled Lisp, which is the second oldest language
in widespread use today (only Fortran is older), to continually adapt to en-
compass the most modern ideas about program design. Thus, Lisp is by
now a family of dialects, which, while sharing most of the original features,
may differ from one another in significant ways. The dialect of Lisp used in
this book is called Scheme.?

I The Lisp 1 Programmer’s Manual appeared in 1960 and the Lisp 1.5 Programmer’s
Manual (McCarthy et al. 1965) was published in 1962. The early history of Lisp is
described in McCarthy 1978.

2 The two dialects in which most major Lisp programs of the 1970s were written are
MacLisp (Moon 1978; Pitman 1983), developed at the MIT Project MAC, and Interlisp
(Teitelman 1974), developed at Bolt Beranek and Newman Inc. and the Xerox Palo
Alto Research Center. Portable Standard Lisp (Hearn 1969; Griss 1981) was a Lisp di-
alect designed to be easily portable between different machines. MacLisp spawned
a number of subdialects, such as Franz Lisp, which was developed at the Univer-
sity of California at Berkeley, and Zetalisp (Moon and Weinreb 1981), which was
based on a special-purpose processor designed at the MIT Artificial Intelligence
Laboratory to run Lisp very efficiently. The Lisp dialect used in this book, called
Scheme (Steele and Sussman 1975), was invented in 1975 by Guy Lewis Steele Jr.
and Gerald Jay Sussman of the MIT Artificial Intelligence Laboratory and later reim-



28

Because of its experimental character and its emphasis on symbol
manipulation, Lisp was at first very inefficient for numerical computa-
tions, at least in comparison with Fortran. Over the years, however, Lisp
compilers have been developed that translate programs into machine
code that can perform numerical computations reasonably efficiently.
And for special applications, Lisp has been used with great effectiveness.
Although Lisp has not yet overcome its old reputation as hopelessly
inefficient, Lisp is now used in many applications where efficiency is not
the central concern. For example, Lisp has become a language of choice
for operating-system shell languages and for extension languages for
editors and computer-aided design systems.

If Lisp is not a mainstream language, why are we using it as the frame-
work for our discussion of programming? Because the language possesses
unique features that make it an excellent medium for studying important
programming constructs and data structures and for relating them to the
linguistic features that support them. The most significant of these fea-
tures is the fact that Lisp descriptions of processes, called procedures, can
themselves be represented and manipulated as Lisp data. The importance
of this is that there are powerful program-design techniques that rely on
the ability to blur the traditional distinction between “passive” data and
“active” processes. As we shall discover, Lisp’s flexibility in handling proce-

plemented for instructional use at MIT. Scheme became an IEEE standard in 1990
(IEEE 1990). The Common Lisp dialect (Steele 1982, Steele 1990) was developed by
the Lisp community to combine features from the earlier Lisp dialects to make an
industrial standard for Lisp. Common Lisp became an ANSI standard in 1994 (ANSI
1994).

3 One such special application was a breakthrough computation of scientific
importance—an integration of the motion of the Solar System that extended
previous results by nearly two orders of magnitude, and demonstrated that the
dynamics of the Solar System is chaotic. This computation was made possible by
new integration algorithms, a special-purpose compiler and a special-purpose
computer all implemented with the aid of software tools written in Lisp (Abelson
et al. 1992; Sussman and Wisdom 1992).
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dures as data makes it one of the most convenient languages in existence
for exploring these techniques. The ability to represent procedures as data
also makes Lisp an excellent language for writing programs that must ma-
nipulate other programs as data, such as the interpreters and compilers
that support computer languages. Above and beyond these considerations,
programming in Lisp is great fun.

1.1 The Elements of Programming

A powerful programming language is more than just a means for instruct-
ing a computer to perform tasks. The language also serves as a framework
within which we organize our ideas about processes. Thus, when we de-
scribe a language, we should pay particular attention to the means that the
language provides for combining simple ideas to form more complexideas.
Every powerful language has three mechanisms for accomplishing this:

primitive expressions
which represent the simplest entities the language is concerned
with,

means of combination
by which compound elements are built from simpler ones, and

means of abstraction
by which compound elements can be named and manipulated as
units.

In programming, we deal with two kinds of elements: procedures and
data. (Later we will discover that they are really not so distinct.) Informally,
datais “stuff” that we want to manipulate, and procedures are descriptions
of the rules for manipulating the data. Thus, any powerful programming
language should be able to describe primitive data and primitive proce-
dures and should have methods for combining and abstracting procedures
and data.
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In this chapter we will deal only with simple numerical data so that we
can focus on the rules for building procedures.* In later chapters we will
see that these same rules allow us to build procedures to manipulate com-
pound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine some typical in-
teractions with an interpreter for the Scheme dialect of Lisp. Imagine that
you are sitting at a computer terminal. You type an expression, and the in-
terpreter responds by displaying the result of its evaluating that expression.

One kind of primitive expression you might type is a number. (More pre-
cisely, the expression that you type consists of the numerals that represent
the number in base 10.) If you present Lisp with a number

486
the interpreter will respond by printing®
486

4 The characterization of numbers as “simple data” is a barefaced bluff. In fact, the
treatment of numbers is one of the trickiest and most confusing aspects of any pro-
gramming language. Some typical issues involved are these: Some computer sys-
tems distinguish integers, such as 2, from real numbers, such as 2.71. Is the real
number 2.00 different from the integer 2? Are the arithmetic operations used for
integers the same as the operations used for real numbers? Does 6 divided by 2 pro-
duce 3, or 3.0?2 How large a number can we represent? How many decimal places
of accuracy can we represent? Is the range of integers the same as the range of
real numbers? Above and beyond these questions, of course, lies a collection of is-
sues concerning roundoff and truncation errors — the entire science of numerical
analysis. Since our focus in this book is on large-scale program design rather than
on numerical techniques, we are going to ignore these problems. The numerical
examples in this chapter will exhibit the usual roundoff behavior that one observes
when using arithmetic operations that preserve a limited number of decimal places
of accuracy in noninteger operations.

Throughout this book, when we wish to emphasize the distinction between the in-
put typed by the user and the response printed by the interpreter, we will show the
latter in slanted characters.
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Expressions representing numbers may be combined with an expression
representing a primitive procedure (such as + or *) to form a compound
expression that represents the application of the procedure to those num-
bers. For example:

(+ 137 349)
486

(- 1000 334)
666

(x 5 99)
495

(/ 10 5)
2

(+ 2.7 10)
12.7

Expressions such as these, formed by delimiting a list of expressions
within parentheses in order to denote procedure application, are called
combinations. The leftmost element in the list is called the operator,
and the other elements are called operands. The value of a combination
is obtained by applying the procedure specified by the operator to the
arguments that are the values of the operands.

The convention of placing the operator to the left of the operands
is known as prefix notation, and it may be somewhat confusing at
first because it departs significantly from the customary mathematical
convention. Prefix notation has several advantages, however. One of them
is that it can accommodate procedures that may take an arbitrary number
of arguments, as in the following examples:

(+ 21 35 12 7)
75

(x 25 4 12)
1200
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No ambiguity can arise, because the operator is always the leftmost ele-
ment and the entire combination is delimited by the parentheses.

A second advantage of prefix notation is that it extends in a straightfor-
ward way to allow combinations to be nested, that is, to have combinations
whose elements are themselves combinations:

(+ (x 35) (- 10 6))
19

There is no limit (in principle) to the depth of such nesting and to the
overall complexity of the expressions that the Lisp interpreter can evaluate.
It is we humans who get confused by still relatively simple expressions such
as

(+ (x 3 (+ (x24) (+35))) (+ (-107) 6))

which the interpreter would readily evaluate to be 57. We can help our-
selves by writing such an expression in the form

(+ (% 3
(+ (x 2 4)
(+ 3 5)))
(+ (- 10 7)

6))

following a formatting convention known as pretty-printing, in which each
long combination is written so that the operands are aligned vertically. The
resulting indentations display clearly the structure of the expression.”

Even with complex expressions, the interpreter always operates in the
same basic cycle: It reads an expression from the terminal, evaluates the
expression, and prints the result. This mode of operation is often expressed
by saying that the interpreter runs in a read-eval-print loop. Observe in

6 Lisp systems typically provide features to aid the user in formatting expressions.
Two especially useful features are one that automatically indents to the proper
pretty-print position whenever a new line is started and one that highlights the
matching left parenthesis whenever a right parenthesis is typed.



33

particular that it is not necessary to explicitly instruct the interpreter to
print the value of the expression.’

1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it provides for
using names to refer to computational objects. We say that the name iden-
tifies a variable whose value is the object.

In the Scheme dialect of Lisp, we name things with define. Typing
(define size 2)

causes the interpreter to associate the value 2 with the name size.® Once
the name size has been associated with the number 2, we can refer to the
value 2 by name:

size

2

(x 5 size)

10

Here are further examples of the use of define:

(define pi 3.14159)

(define radius 10)

(* pi (* radius radius))

314.159

(define circumference (* 2 pi radius))
circumference

62.8318

Define is our language’s simplest means of abstraction, for it allows us to
use simple names to refer to the results of compound operations, such as

7 Lisp obeys the convention that every expression has a value. This convention, to-
gether with the old reputation of Lisp as an inefficient language, is the source of the
quip by Alan Perlis (paraphrasing Oscar Wilde) that “Lisp programmers know the
value of everything but the cost of nothing.”

8 In this book, we do not show the interpreter’s response to evaluating definitions,
since this is highly implementation-dependent.
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the circumference computed above. In general, computational objects
may have very complex structures, and it would be extremely inconve-
nient to have to remember and repeat their details each time we want to
use them. Indeed, complex programs are constructed by building, step
by step, computational objects of increasing complexity. The interpreter
makes this step-by-step program construction particularly convenient be-
cause name-object associations can be created incrementally in successive
interactions. This feature encourages the incremental development and
testing of programs and is largely responsible for the fact that a Lisp pro-
gram usually consists of a large number of relatively simple procedures.

It should be clear that the possibility of associating values with symbols
and later retrieving them means that the interpreter must maintain some
sort of memory that keeps track of the name-object pairs. This memory is
called the environment (more precisely the global environment, since we
will see later that a computation may involve a number of different envi-
ronments).”

1.1.3 Evaluating Combinations

One of our goals in this chapter is to isolate issues about thinking procedu-
rally. As a case in point, let us consider that, in evaluating combinations,
the interpreter is itself following a procedure.

To evaluate a combination, do the following:
1. Evaluate the subexpressions of the combination.

2. Apply the procedure that is the value of the leftmost subexpres-
sion (the operator) to the arguments that are the values of the
other subexpressions (the operands).

Even this simple rule illustrates some important points about processes
in general. First, observe that the first step dictates that in order to accom-
plish the evaluation process for a combination we must first perform the

9 Chapter 3 will show that this notion of environment is crucial, both for understand-
ing how the interpreter works and for implementing interpreters.
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evaluation process on each element of the combination. Thus, the evalu-
ation rule is recursive in nature; that is, it includes, as one of its steps, the
need to invoke the rule itself.!°

4

390
x 26 15
+ 2 24

m+357

x 4 06

Figure 1.1: Tree representation, showing the value of each sub-
combination.

Notice how succinctly the idea of recursion can be used to express what,
in the case of a deeply nested combination, would otherwise be viewed as
a rather complicated process. For example, evaluating

(x (+ 2 (x 46))
(+ 357))

requires that the evaluation rule be applied to four different combinations.
We can obtain a picture of this process by representing the combination in
the form of a tree, as shown in Figure 1.1. Each combination is represented
by a node with branches corresponding to the operator and the operands of
the combination stemming from it. The terminal nodes (that is, nodes with
no branches stemming from them) represent either operators or numbers.

10 1¢ may seem strange that the evaluation rule says, as part of the first step, that we
should evaluate the leftmost element of a combination, since at this point that can
only be an operator such as + or * representing a built-in primitive procedure such
as addition or multiplication. We will see later that it is useful to be able to work
with combinations whose operators are themselves compound expressions.
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Viewing evaluation in terms of the tree, we can imagine that the values of
the operands percolate upward, starting from the terminal nodes and then
combining at higher and higher levels. In general, we shall see that recur-
sion is a very powerful technique for dealing with hierarchical, treelike ob-
jects. In fact, the “percolate values upward” form of the evaluation rule is
an example of a general kind of process known as tree accumulation.

Next, observe that the repeated application of the first step brings us to
the point where we need to evaluate, not combinations, but primitive ex-
pressions such as numerals, built-in operators, or other names. We take
care of the primitive cases by stipulating that

e the values of numerals are the numbers that they name,

 the values of built-in operators are the machine instruction sequences
that carry out the corresponding operations, and

 the values of other names are the objects associated with those names
in the environment.

We may regard the second rule as a special case of the third one by stipu-
lating that symbols such as + and * are also included in the global environ-
ment, and are associated with the sequences of machine instructions that
are their “values.” The key point to notice is the role of the environment
in determining the meaning of the symbols in expressions. In an inter-
active language such as Lisp, it is meaningless to speak of the value of an
expression such as (+ x 1) without specifying any information about the
environment that would provide a meaning for the symbol x (or even for
the symbol +). As we shall see in Chapter 3, the general notion of the en-
vironment as providing a context in which evaluation takes place will play
an important role in our understanding of program execution.

Notice that the evaluation rule given above does not handle definitions.
For instance, evaluating (define x 3) does not apply define to two argu-
ments, one of which is the value of the symbol x and the other of which is
3, since the purpose of the define is precisely to associate x with a value.
(Thatis, (define x 3) is not a combination.)
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Such exceptions to the general evaluation rule are called special forms.
Define is the only example of a special form that we have seen so far, but
we will meet others shortly. Each special form has its own evaluation rule.
The various kinds of expressions (each with its associated evaluation rule)
constitute the syntax of the programming language. In comparison with
most other programming languages, Lisp has a very simple syntax; that is,
the evaluation rule for expressions can be described by a simple general
rule together with specialized rules for a small number of special forms.!!

1.1.4 Compound Procedures
We have identified in Lisp some of the elements that must appear in any
powerful programming language:
 Numbers and arithmetic operations are primitive data and procedures.
» Nesting of combinations provides a means of combining operations.
e Definitions that associate names with values provide a limited means of
abstraction.

Now we will learn about procedure definitions, amuch more powerful ab-
straction technique by which a compound operation can be given a name
and then referred to as a unit.

We begin by examining how to express the idea of “squaring.” We might
say, “To square something, multiply it by itself.” This is expressed in our
language as

1 Special syntactic forms that are simply convenient alternative surface structures
for things that can be written in more uniform ways are sometimes called syntactic
sugar, to use a phrase coined by Peter Landin. In comparison with users of other
languages, Lisp programmers, as a rule, are less concerned with matters of syntax.
(By contrast, examine any Pascal manual and notice how much of it is devoted to
descriptions of syntax.) This disdain for syntax is due partly to the flexibility of Lisp,
which makes it easy to change surface syntax, and partly to the observation that
many “convenient” syntactic constructs, which make the language less uniform,
end up causing more trouble than they are worth when programs become large
and complex. In the words of Alan Perlis, “Syntactic sugar causes cancer of the
semicolon.”
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(define (square x) (*x X X))
We can understand this in the following way:

(define (square X) (* X X))

| | | | | |
To square something, multiply it by itself.

We have here a compound procedure, which has been given the name
square. The procedure represents the operation of multiplying something
by itself. The thing to be multiplied is given a local name, x, which plays
the same role that a pronoun plays in natural language. Evaluating the def-
inition creates this compound procedure and associates it with the name

square.!?

The general form of a procedure definition is
(define ((name) (formal parameters)) <(body))

The (name) is a symbol to be associated with the procedure definition
in the environment.!3 The (formal parameters) are the names used within
the body of the procedure to refer to the corresponding arguments of the
procedure. The (body) is an expression that will yield the value of the
procedure application when the formal parameters are replaced by the ac-
tual arguments to which the procedure is applied.'* The (name) and the
(formal parameters) are grouped within parentheses, just as they would be
in an actual call to the procedure being defined.

12- Observe that there are two different operations being combined here: we are cre-
ating the procedure, and we are giving it the name square. It is possible, indeed
important, to be able to separate these two notions—to create procedures without
naming them, and to give names to procedures that have already been created. We

will see how to do this in Section 1.3.2.

13 Throughout this book, we will describe the general syntax of expressions by using

italic symbols delimited by angle brackets—e.g., (name)—to denote the “slots” in

the expression to be filled in when such an expression is actually used.

14 More generally, the body of the procedure can be a sequence of expressions. In this

case, the interpreter evaluates each expression in the sequence in turn and returns
the value of the final expression as the value of the procedure application.
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Having defined square, we can now use it:

(square 21)
441

(square (+ 2 5))
49

(square (square 3))
81

We can also use square as a building block in defining other procedures.
For example, x*> + y* can be expressed as

(+ (square x) (square y))

We can easily define a procedure sum-of-squares that, given any two
numbers as arguments, produces the sum of their squares:

(define (sum-of-squares X y)
(+ (square x) (square y)))

(sum-of-squares 3 4)

25

Now we can use sum-of-squares as a building block in constructing fur-
ther procedures:

(define (f a)
(sum-of-squares (+ a 1) (*x a 2)))

(f 5)
136

Compound procedures are used in exactly the same way as primitive
procedures. Indeed, one could not tell by looking at the definition
of sum-of-squares given above whether square was built into the
interpreter, like + and *, or defined as a compound procedure.



40

1.1.5 The Substitution Model for Procedure Application

To evaluate a combination whose operator names a compound procedure,
the interpreter follows much the same process as for combinations whose
operators name primitive procedures, which we described in Section 1.1.3.
That is, the interpreter evaluates the elements of the combination and ap-
plies the procedure (which is the value of the operator of the combination)
to the arguments (which are the values of the operands of the combina-
tion).

We can assume that the mechanism for applying primitive procedures
to arguments is built into the interpreter. For compound procedures, the
application process is as follows:

To apply a compound procedure to arguments, evaluate the body
of the procedure with each formal parameter replaced by the cor-
responding argument.

To illustrate this process, let’s evaluate the combination

(f 5)
where f is the procedure defined in Section 1.1.4. We begin by retrieving
the body of f:
(sum-of-squares (+ a 1) (x a 2))
Then we replace the formal parameter a by the argument 5:
(sum-of-squares (+ 5 1) (x5 2))

Thus the problem reduces to the evaluation of a combination with two
operands and an operator sum-of-squares. Evaluating this combination
involves three subproblems. We must evaluate the operator to get the pro-
cedure to be applied, and we must evaluate the operands to get the argu-
ments. Now (+ 5 1) produces 6 and (x 5 2) produces 10, so we must
apply the sum-of-squares procedure to 6 and 10. These values are sub-
stituted for the formal parameters x and y in the body of sum-of-squares,
reducing the expression to

(+ (square 6) (square 10))
If we use the definition of square, this reduces to
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(+ (x 6 6) (x 10 10))
which reduces by multiplication to
(+ 36 100)
and finally to
136

The process we have just described is called the substitution model for
procedure application. It can be taken as a model that determines the
“meaning” of procedure application, insofar as the procedures in this
chapter are concerned. However, there are two points that should be
stressed:

e The purpose of the substitution is to help us think about procedure
application, not to provide a description of how the interpreter really
works. Typical interpreters do not evaluate procedure applications by
manipulating the text of a procedure to substitute values for the formal
parameters. In practice, the “substitution” is accomplished by using a
local environment for the formal parameters. We will discuss this more
fully in Chapter 3 and Chapter 4 when we examine the implementation
of an interpreter in detail.

» Over the course of this book, we will present a sequence of increasingly
elaborate models of how interpreters work, culminating with a com-
plete implementation of an interpreter and compiler in Chapter 5. The
substitution model is only the first of these models—a way to get started
thinking formally about the evaluation process. In general, when mod-
eling phenomena in science and engineering, we begin with simplified,
incomplete models. As we examine things in greater detail, these sim-
ple models become inadequate and must be replaced by more refined
models. The substitution model is no exception. In particular, when we
address in Chapter 3 the use of procedures with “mutable data,” we will
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see that the substitution model breaks down and must be replaced by a
more complicated model of procedure application.!®

Applicative order versus normal order

According to the description of evaluation given in Section 1.1.3, the in-
terpreter first evaluates the operator and operands and then applies the
resulting procedure to the resulting arguments. This is not the only way to
perform evaluation. An alternative evaluation model would not evaluate
the operands until their values were needed. Instead it would first substi-
tute operand expressions for parameters until it obtained an expression in-
volving only primitive operators, and would then perform the evaluation.
If we used this method, the evaluation of (f 5) would proceed according
to the sequence of expansions

(sum-of-squares (+ 5 1) (x5 2))
(+ (square (+ 5 1)) (square (x 5 2)) )
(+ (x (+51) (+51)) (x (x52) (x5 2)))

followed by the reductions

(+ (x 6 6) (x 10 10))
(+ 36 100)
136

This gives the same answer as our previous evaluation model, but the
process is different. In particular, the evaluations of (+ 5 1) and (x 5 2)
are each performed twice here, corresponding to the reduction of the ex-
pression (* x x) with x replaced respectively by (+ 5 1) and (x 5 2).

15 Despite the simplicity of the substitution idea, it turns out to be surprisingly com-
plicated to give a rigorous mathematical definition of the substitution process. The
problem arises from the possibility of confusion between the names used for the
formal parameters of a procedure and the (possibly identical) names used in the
expressions to which the procedure may be applied. Indeed, there is a long history
of erroneous definitions of substitution in the literature of logic and programming
semantics. See Stoy 1977 for a careful discussion of substitution.
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This alternative “fully expand and then reduce” evaluation method is
known as normal-order evaluation, in contrast to the “evaluate the argu-
ments and then apply” method that the interpreter actually uses, which is
called applicative-order evaluation. It can be shown that, for procedure ap-
plications that can be modeled using substitution (including all the proce-
dures in the first two chapters of this book) and that yield legitimate values,
normal-order and applicative-order evaluation produce the same value.
(See Exercise 1.5 for an instance of an “illegitimate” value where normal-
order and applicative-order evaluation do not give the same result.)

Lisp uses applicative-order evaluation, partly because of the additional
efficiency obtained from avoiding multiple evaluations of expressions
such as those illustrated with (+ 5 1) and (* 5 2) above and, more
significantly, because normal-order evaluation becomes much more
complicated to deal with when we leave the realm of procedures that can
be modeled by substitution. On the other hand, normal-order evaluation
can be an extremely valuable tool, and we will investigate some of its
implications in Chapter 3 and Chapter 4.'°

1.1.6 Conditional Expressions and Predicates

The expressive power of the class of procedures that we can define at this
point is very limited, because we have no way to make tests and to per-
form different operations depending on the result of a test. For instance,
we cannot define a procedure that computes the absolute value of a num-
ber by testing whether the number is positive, negative, or zero and taking

16 11y Chapter 3 we will introduce stream processing, which is a way of handling ap-
parently “infinite” data structures by incorporating a limited form of normal-order
evaluation. In Section 4.2 we will modify the Scheme interpreter to produce a
normal-order variant of Scheme.
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different actions in the different cases according to the rule
f x, if x>0

x|=4 0, if x=0

\—m if x<0O

This construct is called a case analysis, and there is a special form in Lisp
for notating such a case analysis. It is called cond (which stands for “condi-
tional”), and it is used as follows:

(define (abs x)

(cond ((> x 0) x)
((=x0) 0)
((<x0) (- x))))

The general form of a conditional expression is

(cond ({p1) (e1))
({p2) (e2))

consisting of the symbol cond followed by parenthesized pairs of expres-
sions

((p) (e))
called clauses. The first expression in each pair is a predicate—that is, an
expression whose value is interpreted as either true or false.!”

Conditional expressions are evaluated as follows. The predicate (p;) is
evaluated first. If its value is false, then (p,) is evaluated. If (p2)’s value is
also false, then (p3) is evaluated. This process continues until a predicate

17 “Interpreted as either true or false” means this: In Scheme, there are two distin-
guished values that are denoted by the constants #t and #f. When the interpreter
checks a predicate’s value, it interprets #f as false. Any other value is treated as
true. (Thus, providing #t is logically unnecessary, but it is convenient.) In this book
we will use names true and false, which are associated with the values #t and #f
respectively.
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is found whose value is true, in which case the interpreter returns the value
of the corresponding consequent expression (e) of the clause as the value
of the conditional expression. If none of the (p)’s is found to be true, the
value of the cond is undefined.

The word predicateis used for procedures that return true or false, as well
as for expressions that evaluate to true or false. The absolute-value proce-
dure abs makes use of the primitive predicates >, < and =.!® These take two
numbers as arguments and test whether the first number is, respectively,
greater than, less than, or equal to the second number, returning true or
false accordingly.

Another way to write the absolute-value procedure is

(define (abs x)
(cond ((< x 0) (- x))
(else x)))

which could be expressed in English as “If x is less than zero return —x;
otherwise return x.” Else is a special symbol that can be used in place
of the (p) in the final clause of a cond. This causes the cond to return as
its value the value of the corresponding (e) whenever all previous clauses
have been bypassed. In fact, any expression that always evaluates to a true
value could be used as the (p) here.

Here is yet another way to write the absolute-value procedure:
(define (abs x)
(if (< x 0)
(- x)
X))

This uses the special form if, a restricted type of conditional that can be
used when there are precisely two cases in the case analysis. The general
form of an if expression is

(if (predicate) {(consequent) (alternative))

18 Abs also uses the “minus” operator -, which, when used with a single operand, as
in (- x), indicates negation.
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To evaluate an if expression, the interpreter starts by evaluating the
(predicate) part of the expression. If the (predicate) evaluates to a true
value, the interpreter then evaluates the (consequent) and returns its
value. Otherwise it evaluates the (alternative) and returns its value.!?

In addition to primitive predicates such as <, =, and >, there are logical
composition operations, which enable us to construct compound predi-
cates. The three most frequently used are these:

e (and (ey) ... (en)
The interpreter evaluates the expressions (e) one at a time, in left-to-
right order. If any (e) evaluates to false, the value of the and expression
is false, and the rest of the (e)’s are not evaluated. If all (e)’s evaluate to
true values, the value of the and expression is the value of the last one.

e (or (en ... {en))
The interpreter evaluates the expressions (e) one at a time, in left-to-
right order. If any (e) evaluates to a true value, that value is returned as
the value of the or expression, and the rest of the (e)’s are not evaluated.
If all (e)’s evaluate to false, the value of the or expression is false.

e (not (e))

The value of a not expression is true when the expression (e) evaluates
to false, and false otherwise.

Notice that and and or are special forms, not procedures, because the
subexpressions are not necessarily all evaluated. Not is an ordinary proce-
dure.

As an example of how these are used, the condition that a number x be
in the range 5 < x < 10 may be expressed as

(and (> x 5) (< x 10))

19° A minor difference between if and cond is that the (e) part of each cond clause
may be a sequence of expressions. If the corresponding (p) is found to be true, the
expressions (e) are evaluated in sequence and the value of the final expression in
the sequence is returned as the value of the cond. In an if expression, however, the
(consequent) and (alternative) must be single expressions.
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As another example, we can define a predicate to test whether one num-
ber is greater than or equal to another as

(define (>= x vy)
(or (> xvy) (=x1y)))
or alternatively as
(define (>= x vy)
(not (< x vy)))

Exercise 1.1: Below is a sequence of expressions. What is the result
printed by the interpreter in response to each expression? Assume
that the sequence is to be evaluated in the order in which it is pre-
sented.

10

(+5 3 4)

(- 91)

(/ 6 2)

(+ (x24) (- 46))
(define a 3)
(define b (+ a 1))
(+ab (xab))

(= a b)

(if (and (> b a) (<b (x ab)))
b
a)

(cond ((= a 4) 6)
((=b4) (+ 67 a))
(else 25))

(+ 2 (if (> b a) b a))

(x (cond ((> a b) a)
(< ab) b)
else -1))

(
(
(
))

(+ al



Exercise 1.2: Translate the following expression into prefix form.

5+4+(2-3B-(6+13))
3(6-2)2-7)

Exercise 1.3: Define a procedure that takes three numbers as argu-
ments and returns the sum of the squares of the two larger num-
bers.

Exercise 1.4: Observe that our model of evaluation allows for com-
binations whose operators are compound expressions. Use this
observation to describe the behavior of the following procedure:

(define (a-plus-abs-b a b)
((if (> b 0) + -) a b))

Exercise 1.5: Ben Bitdiddle has invented a test to determine
whether the interpreter he is faced with is using applicative-order
evaluation or normal-order evaluation. He defines the following
two procedures:

(define (p) (p))
(define (test x y)

(1f (=x0) 0y))
Then he evaluates the expression
(test 0 (p))

What behavior will Ben observe with an interpreter that uses
applicative-order evaluation? What behavior will he observe with
an interpreter that uses normal-order evaluation? Explain your
answer. (Assume that the evaluation rule for the special form if
is the same whether the interpreter is using normal or applicative
order: The predicate expression is evaluated first, and the result
determines whether to evaluate the consequent or the alternative
expression.)

48
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1.1.7 Example: Square Roots by Newton’s Method

Procedures, as introduced above, are much like ordinary mathematical
functions. They specify a value that is determined by one or more
parameters. But there is an important difference between mathematical
functions and computer procedures. Procedures must be effective.

As a case in point, consider the problem of computing square roots. We
can define the square-root function as

vx = the y such that y=0 and y*=x

This describes a perfectly legitimate mathematical function. We could use
it to recognize whether one number is the square root of another, or to de-
rive facts about square roots in general. On the other hand, the definition
does not describe a procedure. Indeed, it tells us almost nothing about how
to actually find the square root of a given number. It will not help matters
to rephrase this definition in pseudo-Lisp:

(define (sqgrt x)
(the y (and (>=vy 0)
(= (square y) x))))
This only begs the question.

The contrast between function and procedure is a reflection of the
general distinction between describing properties of things and describing
how to do things, or, as it is sometimes referred to, the distinction between
declarative knowledge and imperative knowledge. In mathematics we
are usually concerned with declarative (what is) descriptions, whereas
in computer science we are usually concerned with imperative (how to)
descriptions.?”

20 peclarative and imperative descriptions are intimately related, as indeed are math-
ematics and computer science. For instance, to say that the answer produced by a
program is “correct” is to make a declarative statement about the program. There
is a large amount of research aimed at establishing techniques for proving that pro-
grams are correct, and much of the technical difficulty of this subject has to do with
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How does one compute square roots? The most common way is to use
Newton’s method of successive approximations, which says that whenever
we have a guess y for the value of the square root of a number x, we can
perform a simple manipulation to get a better guess (one closer to the ac-
tual square root) by averaging y with x/y.?! For example, we can compute
the square root of 2 as follows. Suppose our initial guess is 1:

Guess Quotient Average

1 (2/1) = 2 ((2 +1)/2) =1.5

1.5 (2/1.5) = 1.3333 ((1.3333 + 1.5)/2) = 1.4167
1.4167 (2/1.4167) = 1.4118 ((1.4167 + 1.4118)/2) = 1.4142
1.4142

Continuing this process, we obtain better and better approximations to the
square root.

Now let’s formalize the process in terms of procedures. We start with
a value for the radicand (the number whose square root we are trying to
compute) and a value for the guess. If the guess is good enough for our
purposes, we are done; if not, we must repeat the process with an improved
guess. We write this basic strategy as a procedure:

(define (sqgrt-iter guess Xx)
(i1f (good-enough? guess Xx)

negotiating the transition between imperative statements (from which programs
are constructed) and declarative statements (which can be used to deduce things).
In arelated vein, an important current area in programming-language design is the
exploration of so-called very high-level languages, in which one actually programs
in terms of declarative statements. The idea is to make interpreters sophisticated
enough so that, given “what is” knowledge specified by the programmer, they can
generate “how to” knowledge automatically. This cannot be done in general, but
there are important areas where progress has been made. We shall revisit this idea

in Chapter 4.

21 This square-root algorithm is actually a special case of Newton’s method, which is

a general technique for finding roots of equations. The square-root algorithm itself
was developed by Heron of Alexandria in the first century A.D. We will see how to
express the general Newton’s method as a Lisp procedure in Section 1.3.4.
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guess
(sqrt-iter (improve guess Xx)

X)))

A guess is improved by averaging it with the quotient of the radicand and

the old guess:

(define (improve guess X)
(average guess (/ x guess)))

where

(define (average X y)
(/ (+ xy) 2))
We also have to say what we mean by “good enough.” The following

will do for illustration, but it is not really a very good test. (See Exercise
1.7.) The idea is to improve the answer until it is close enough so that its
square differs from the radicand by less than a predetermined tolerance
(here 0.001):%4

that the square root of any number is

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

Finally, we need a way to get started. For instance, we can always guess
1:23

(define (sqrt x)

22 We will usually give predicates names ending with question marks, to help us re-

23

member that they are predicates. This is just a stylistic convention. As far as the
interpreter is concerned, the question mark is just an ordinary character.

Observe that we express our initial guess as 1.0 rather than 1. This would not make
any difference in many Lisp implementations. MIT Scheme, however, distinguishes
between exact integers and decimal values, and dividing two integers produces a
rational number rather than a decimal. For example, dividing 10 by 6 yields 5/3,
while dividing 10.0 by 6.0 yields 1.6666666666666667. (We will learn how to imple-
ment arithmetic on rational numbers in Section 2.1.1.) If we start with an initial
guess of 1 in our square-root program, and x is an exact integer, all subsequent
values produced in the square-root computation will be rational numbers rather
than decimals. Mixed operations on rational numbers and decimals always yield
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(sqrt-iter 1.0 x))
If we type these definitions to the interpreter, we can use sqrt just as we
can use any procedure:
(sqrt 9)
3.00009155413138

(sqrt (+ 100 37))
11.704699917758145

(sqrt (+ (sqrt 2) (sqrt 3)))
1.7739279023207892

(square (sqgrt 1000))
1000.000369924366

The sqrt program also illustrates that the simple procedural language
we have introduced so far is sufficient for writing any purely numerical
program that one could write in, say, C or Pascal. This might seem sur-
prising, since we have not included in our language any iterative (looping)
constructs that direct the computer to do something over and over again.
Sqrt-iter, on the other hand, demonstrates how iteration can be accom-
plished using no special construct other than the ordinary ability to call a
procedure.’*

Exercise 1.6: Alyssa P. Hacker doesn’t see why if needs to be pro-
vided as a special form. “Why can'’t I just define it as an ordinary
procedure in terms of cond?” she asks. Alyssa’s friend Eva Lu Ator
claims this can indeed be done, and she defines a new version of
if:

decimals, so starting with an initial guess of 1.0 forces all subsequent values to be
decimals.
24 Readers who are worried about the efficiency issues involved in using procedure

calls to implement iteration should note the remarks on “tail recursion” in Section
1.2.1.



(define (new-if predicate then-clause else-clause)
(cond (predicate then-clause)
(else else-clause)))

Eva demonstrates the program for Alyssa:

(new-if (= 2 3) 0 5)
5

(new-if (=1 1) 0 5)
0

Delighted, Alyssa uses new-if to rewrite the square-root program:

(define (sqrt-iter guess x)
(new-if (good-enough? guess x)
guess
(sqrt-iter (improve guess Xx)

X)))

What happens when Alyssa attempts to use this to compute square
roots? Explain.

Exercise 1.7: The good-enough? test used in computing square
roots will not be very effective for finding the square roots of very
small numbers. Also, in real computers, arithmetic operations are
almost always performed with limited precision. This makes our
test inadequate for very large numbers. Explain these statements,
with examples showing how the test fails for small and large num-
bers. An alternative strategy for implementing good-enough? is to
watch how guess changes from one iteration to the next and to
stop when the change is a very small fraction of the guess. Design
a square-root procedure that uses this kind of end test. Does this
work better for small and large numbers?

Exercise 1.8: Newton’s method for cube roots is based on the fact
that if y is an approximation to the cube root of x, then a better

53
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approximation is given by the value
x/y* +2y
3
Use this formula to implement a cube-root procedure analogous
to the square-root procedure. (In Section 1.3.4 we will see how to
implement Newton’s method in general as an abstraction of these
square-root and cube-root procedures.)

1.1.8 Procedures as Black-Box Abstractions

Sqrt is our first example of a process defined by a set of mutually defined
procedures. Notice that the definition of sqrt-iter is recursive; that is,
the procedure is defined in terms of itself. The idea of being able to de-
fine a procedure in terms of itself may be disturbing; it may seem unclear
how such a “circular” definition could make sense at all, much less specify
a well-defined process to be carried out by a computer. This will be ad-
dressed more carefully in Section 1.2. But first let’s consider some other
important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up naturally
into a number of subproblems: how to tell whether a guess is good enough,
how to improve a guess, and so on. Each of these tasks is accomplished by
a separate procedure. The entire sqrt program can be viewed as a cluster
of procedures (shown in Figure 1.2) that mirrors the decomposition of the
problem into subproblems.

sqrt
|
sqrt-iter
/ \
good-enough improve
/ \ \
square abs average

Figure 1.2: Procedural decomposition of the sqrt program.
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The importance of this decomposition strategy is not simply that one is
dividing the program into parts. After all, we could take any large program
and divide it into parts—the first ten lines, the next ten lines, the next ten
lines, and so on. Rather, it is crucial that each procedure accomplishes
an identifiable task that can be used as a module in defining other proce-
dures. For example, when we define the good-enough? procedure in terms
of square, we are able to regard the square procedure as a “black box.”
We are not at that moment concerned with how the procedure computes
its result, only with the fact that it computes the square. The details of how
the square is computed can be suppressed, to be considered at a later time.
Indeed, as far as the good-enough? procedure is concerned, square is not
quite a procedure but rather an abstraction of a procedure, a so-called pro-
cedural abstraction. At this level of abstraction, any procedure that com-
putes the square is equally good.

Thus, considering only the values they return, the following two proce-
dures for squaring a number should be indistinguishable. Each takes a nu-
merical argument and produces the square of that number as the value.?

(define (square x) (*x X X))

(define (square x)
(exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress detail. The users
of the procedure may not have written the procedure themselves, but may
have obtained it from another programmer as a black box. A user should
not need to know how the procedure is implemented in order to use it.

25 1t is not even clear which of these procedures is a more efficient implementation.
This depends upon the hardware available. There are machines for which the “ob-
vious” implementation is the less efficient one. Consider a machine that has exten-
sive tables of logarithms and antilogarithms stored in a very efficient manner.
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Local names

One detail of a procedure’s implementation that should not matter to the
user of the procedure is the implementer’s choice of names for the proce-
dure’s formal parameters. Thus, the following procedures should not be
distinguishable:

(define (square x) (*x X X))
(define (square y) (x y y))

This principle—that the meaning of a procedure should be independent
of the parameter names used by its author—seems on the surface to be self-
evident, but its consequences are profound. The simplest consequence is
that the parameter names of a procedure must be local to the body of the
procedure. For example, we used square in the definition of good-enough?
in our square-root procedure:

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

The intention of the author of good-enough? is to determine if the square
of the first argument is within a given tolerance of the second argument.
We see that the author of good-enough? used the name guess to refer to
the first argument and x to refer to the second argument. The argument of
square is guess. If the author of square used x (as above) to refer to that
argument, we see that the x in good -enough? must be a different x than the
one in square. Running the procedure square must not affect the value of
x that is used by good-enough?, because that value of x may be needed by
good-enough? after square is done computing.

If the parameters were not local to the bodies of their respective proce-
dures, then the parameter x in square could be confused with the param-
eter x in good-enough?, and the behavior of good-enough? would depend
upon which version of square we used. Thus, square would not be the
black box we desired.

A formal parameter of a procedure has a very special role in the proce-
dure definition, in that it doesn’t matter what name the formal parameter
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has. Such a name is called a bound variable, and we say that the procedure
definition binds its formal parameters. The meaning of a procedure defini-
tion is unchanged if a bound variable is consistently renamed throughout
the definition.?® If a variable is not bound, we say that it is free. The set of
expressions for which a binding defines a name is called the scope of that
name. In a procedure definition, the bound variables declared as the for-
mal parameters of the procedure have the body of the procedure as their
scope.

In the definition of good-enough? above, guess and x are bound vari-
ables but <, -, abs, and square are free. The meaning of good-enough?
should be independent of the names we choose for guess and x so long
as they are distinct and different from <, -, abs, and square. (If we re-
named guess to abs we would have introduced a bug by capturing the
variable abs. It would have changed from free to bound.) The meaning of
good-enough? is not independent of the names of its free variables, how-
ever. It surely depends upon the fact (external to this definition) that the
symbol abs names a procedure for computing the absolute value of a num-
ber. Good-enough? will compute a different function if we substitute cos
for abs in its definition.

Internal definitions and block structure

We have one kind of name isolation available to us so far: The formal pa-
rameters of a procedure are local to the body of the procedure. The square-
root program illustrates another way in which we would like to control the
use of names. The existing program consists of separate procedures:

(define (sqrt x)
(sqrt-iter 1.0 x))

(define (sqgrt-iter guess Xx)
(if (good-enough? guess Xx)

26 The concept of consistent renaming is actually subtle and difficult to define for-
mally. Famous logicians have made embarrassing errors here.
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guess
(sqrt-iter (improve guess X) X)))

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

(define (improve guess Xx)
(average guess (/ x guess)))

The problem with this program is that the only procedure that is
important to users of sqrt is sqrt. The other procedures (sqrt-iter,
good-enough?, and improve) only clutter up their minds. They may
not define any other procedure called good-enough? as part of another
program to work together with the square-root program, because sqrt
needs it. The problem is especially severe in the construction of large
systems by many separate programmers. For example, in the construction
of a large library of numerical procedures, many numerical functions are
computed as successive approximations and thus might have procedures
named good-enough? and improve as auxiliary procedures. We would like
to localize the subprocedures, hiding them inside sqrt so that sqrt could
coexist with other successive approximations, each having its own private
good-enough? procedure. To make this possible, we allow a procedure to
have internal definitions that are local to that procedure. For example, in
the square-root problem we can write

(define (sqgrt x)

(define (good-enough? guess x)

(< (abs (- (square guess) X))
0.001))

(define (improve guess Xx)

(average guess
(/ x guess)))

(define (sqrt-iter guess x)

(1f (good-enough? guess Xx)
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guess
(sqrt-iter (improve guess X) X)))
(sqrt-iter 1.0 x))

Such nesting of definitions, called block structure, is basically the right
solution to the simplest name-packaging problem. But there is a better
idea lurking here. In addition to internalizing the definitions of the auxil-
iary procedures, we can simplify them. Since x is bound in the definition of
sqrt, the procedures good-enough?, improve, and sqrt-iter, which are
defined internally to sqrt, are in the scope of x. Thus, it is not necessary to
pass x explicitly to each of these procedures. Instead, we allow x to be a free
variable in the internal definitions, as shown below. Then x gets its value
from the argument with which the enclosing procedure sqrt is called. This
discipline is called lexical scoping.?’

(define (sqrt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))
(define (improve guess)
(average guess (/ x guess)))
(define (sgrt-iter guess)
(if (good-enough? guess)
guess
(sqrt-iter (improve guess))))
(sqrt-iter 1.0))

27 Lexical scoping dictates that free variables in a procedure are taken to refer to bind-
ings made by enclosing procedure definitions; that is, they are looked up in the
environment in which the procedure was defined. We will see how this works in
detail in chapter 3 when we study environments and the detailed behavior of the
interpreter.
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We will use block structure extensively to help us break up large pro-
grams into tractable pieces.?® The idea of block structure originated with
the programming language Algol 60. It appears in most advanced program-
ming languages and is an important tool for helping to organize the con-
struction of large programs.

1.2 Procedures and the Processes They Generate

We have now considered the elements of programming: We have used
primitive arithmetic operations, we have combined these operations,
and we have abstracted these composite operations by defining them as
compound procedures. But that is not enough to enable us to say that we
know how to program. Our situation is analogous to that of someone who
has learned the rules for how the pieces move in chess but knows nothing
of typical openings, tactics, or strategy. Like the novice chess player, we
don’t yet know the common patterns of usage in the domain. We lack the
knowledge of which moves are worth making (which procedures are worth
defining). We lack the experience to predict the consequences of making a
move (executing a procedure).

The ability to visualize the consequences of the actions under consid-
eration is crucial to becoming an expert programmer, just as it is in any
synthetic, creative activity. In becoming an expert photographer, for exam-
ple, one must learn how to look at a scene and know how dark each region
will appear on a print for each possible choice of exposure and develop-
ment conditions. Only then can one reason backward, planning framing,
lighting, exposure, and development to obtain the desired effects. So it is
with programming, where we are planning the course of action to be taken
by a process and where we control the process by means of a program. To
become experts, we must learn to visualize the processes generated by var-

28 Embedded definitions must come first in a procedure body. The management is
not responsible for the consequences of running programs that intertwine defini-
tion and use.
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ious types of procedures. Only after we have developed such a skill can we
learn to reliably construct programs that exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational pro-
cess. It specifies how each stage of the process is built upon the previous
stage. We would like to be able to make statements about the overall, or
global, behavior of a process whose local evolution has been specified by a
procedure. This is very difficult to do in general, but we can at least try to
describe some typical patterns of process evolution.

In this section we will examine some common “shapes” for processes
generated by simple procedures. We will also investigate the rates at which
these processes consume the important computational resources of time
and space. The procedures we will consider are very simple. Their role is
like that played by test patterns in photography: as oversimplified proto-
typical patterns, rather than practical examples in their own right.

1.2.1 Linear Recursion and Iteration
We begin by considering the factorial function, defined by

n=n-(n-1)-(n-2)---3-2-1

There are many ways to compute factorials. One way is to make use of the
observation that n! is equal to n times (n — 1)! for any positive integer n:

nn=n-[(n-1)-(n-2)---3-2-1]=n-(n-1)

Thus, we can compute n! by computing (n — 1)! and multiplying the result
by n. If we add the stipulation that 1! is equal to 1, this observation trans-
lates directly into a procedure:

(define (factorial n)
(if (= n 1)
1
(* n (factorial (- n 1)))))

We can use the substitution model of Section 1.1.5 to watch this proce-
dure in action computing 6!, as shown in Figure 1.3.
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Now let’s take a different perspective on computing factorials. We could
describe a rule for computing n! by specifying that we first multiply 1 by
2, then multiply the result by 3, then by 4, and so on until we reach n.
More formally, we maintain a running product, together with a counter
that counts from 1 up to n. We can describe the computation by saying
that the counter and the product simultaneously change from one step to
the next according to the rule

product <« counter *x product
counter <« counter + 1

and stipulating that n! is the value of the product when the counter exceeds
n.

(factorial 6)

(* 6 (factorial 5))

(x 6 (x 5 (factorial 4)))

(x 6 (x5 (x 4 (factorial 3))))

(x 6 (x5 (x 4 (x 3 (factorial 2)))))
(* 6 (x5 (x4 (x 3 (x 2 (factorial 1))))))
(*x 6 (x5 (x4 (x3 (x21)))))

(*x 6 (x5 (x4 (x 3 2))))

(*x 6 (x5 (x4 6)))

(*x 6 (x 5 24))

(x 6 120)

720

Figure 1.3: A linear recursive process for computing 6!.

Once again, we can recast our description as a procedure for computing
factorials:?"

29 In areal program we would probably use the block structure introduced in the last
section to hide the definition of fact-iter:

(define (factorial n)
(define (iter product counter)
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(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter max-count)
(1f (> counter max-count)
product
(fact-iter (* counter product)
(+ counter 1)
max-count)))

As before, we can use the substitution model to visualize the process of
computing 6!, as shown in Figure 1.4.

factorial 6) D————\

(

(fact-iter 1 1 6
(fact-iter 1 2 6
(fact-iter 2 3 6
(fact-iter 6 4 6
(fact-iter 24 5 6)
(fact-iter 120 6 6)
(fact-iter 720 7 6)
720 < ~

Figure 1.4: A linear iterative process for computing 6!.

Compare the two processes. From one point of view, they seem hardly
different at all. Both compute the same mathematical function on the same
domain, and each requires a number of steps proportional to 7 to compute
n!. Indeed, both processes even carry out the same sequence of multipli-

(if (> counter n)
product
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

We avoided doing this here so as to minimize the number of things to think about
at once.
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cations, obtaining the same sequence of partial products. On the other
hand, when we consider the “shapes” of the two processes, we find that
they evolve quite differently.

Consider the first process. The substitution model reveals a shape of ex-
pansion followed by contraction, indicated by the arrow in Figure 1.3. The
expansion occurs as the process builds up a chain of deferred operations
(in this case, a chain of multiplications). The contraction occurs as the
operations are actually performed. This type of process, characterized by
a chain of deferred operations, is called a recursive process. Carrying out
this process requires that the interpreter keep track of the operations to be
performed later on. In the computation of 7!, the length of the chain of
deferred multiplications, and hence the amount of information needed to
keep track of it, grows linearly with n (is proportional to n), just like the
number of steps. Such a process is called a linear recursive process.

By contrast, the second process does not grow and shrink. At each step,
all we need to keep track of, for any n, are the current values of the vari-
ables product, counter, and max-count. We call this an iterative process.
In general, an iterative process is one whose state can be summarized by
a fixed number of state variables, together with a fixed rule that describes
how the state variables should be updated as the process moves from state
to state and an (optional) end test that specifies conditions under which the
process should terminate. In computing n!, the number of steps required
grows linearly with n. Such a process is called a linear iterative process.

The contrast between the two processes can be seen in another way. In
the iterative case, the program variables provide a complete description of
the state of the process at any point. If we stopped the computation be-
tween steps, all we would need to do to resume the computation is to sup-
ply the interpreter with the values of the three program variables. Not so
with the recursive process. In this case there is some additional “hidden”
information, maintained by the interpreter and not contained in the pro-
gram variables, which indicates “where the process is” in negotiating the
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chain of deferred operations. The longer the chain, the more information
must be maintained.3’

In contrasting iteration and recursion, we must be careful not to confuse
the notion of a recursive process with the notion of a recursive procedure.
When we describe a procedure as recursive, we are referring to the syntac-
tic fact that the procedure definition refers (either directly or indirectly) to
the procedure itself. But when we describe a process as following a pat-
tern that is, say, linearly recursive, we are speaking about how the process
evolves, not about the syntax of how a procedure is written. It may seem
disturbing that we refer to a recursive procedure such as fact-iter as gen-
erating an iterative process. However, the process really is iterative: Its state
is captured completely by its three state variables, and an interpreter need
keep track of only three variables in order to execute the process.

One reason that the distinction between process and procedure may be
confusing is that most implementations of common languages (including
Ada, Pascal, and C) are designed in such a way that the interpretation of any
recursive procedure consumes an amount of memory that grows with the
number of procedure calls, even when the process described is, in prin-
ciple, iterative. As a consequence, these languages can describe iterative
processes only by resorting to special-purpose “looping constructs” such
as do, repeat, until, for, and while. The implementation of Scheme we
shall consider in Chapter 5 does not share this defect. It will execute an iter-
ative process in constant space, even if the iterative process is described by
a recursive procedure. An implementation with this property is called tail-
recursive. With a tail-recursive implementation, iteration can be expressed

30 When we discuss the implementation of procedures on register machines in
Chapter 5, we will see that any iterative process can be realized “in hardware” as
a machine that has a fixed set of registers and no auxiliary memory. In contrast,
realizing a recursive process requires a machine that uses an auxiliary data
structure known as a stack.
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using the ordinary procedure call mechanism, so that special iteration con-
structs are useful only as syntactic sugar.3!

Exercise 1.9: Each of the following two procedures defines
a method for adding two positive integers in terms of the
procedures inc, which increments its argument by 1, and dec,
which decrements its argument by 1.
(define (+ a b)
(if (= a 0) b (inc (+ (dec a) b))))

(define (+ a b)
(if (= a 0) b (+ (dec a) (inc b))))
Using the substitution model, illustrate the process generated by

each procedure in evaluating (+ 4 5). Are these processes itera-
tive or recursive?

Exercise 1.10: The following procedure computes a mathematical
function called Ackermann’s function.

(define (A x vy)

(cond ((=vy 0) 0)
((=x0) (x2vy))
((=y 1) 2)
(else (A (- x 1)

(Ax (-y1))))))
What are the values of the following expressions?
(A1 10)

31 Tail recursion has long been known as a compiler optimization trick. A coherent
semantic basis for tail recursion was provided by Carl Hewitt (1977), who explained
it in terms of the “message-passing” model of computation that we shall discuss in
Chapter 3. Inspired by this, Gerald Jay Sussman and Guy Lewis Steele Jr. (see Steele
and Sussman 1975) constructed a tail-recursive interpreter for Scheme. Steele later
showed how tail recursion is a consequence of the natural way to compile proce-
dure calls (Steele 1977). The IEEE standard for Scheme requires that Scheme imple-
mentations be tail-recursive.
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(A2 4)

(A 3 3)
Consider the following procedures, where A is the procedure de-
fined above:

(define (f n) (A O n))

(define (g n) (A 1 n))

(define (h n) (A 2 n))

(define (k n) (x 5 n n))

Give concise mathematical definitions for the functions computed
by the procedures f, g, and h for positive integer values of n. For
example, (k n) computes 5n°.

1.2.2 Tree Recursion

Another common pattern of computation is called tree recursion. As an ex-
ample, consider computing the sequence of Fibonacci numbers, in which
each number is the sum of the preceding two:

0,1,1,23,5,8,13,21, ...

In general, the Fibonacci numbers can be defined by the rule

0 if n=0
Fib(n) = { 1 if n=1
Fib(n — 1)+ Fib(n — 2) otherwise

We can immediately translate this definition into a recursive procedure for
computing Fibonacci numbers:
(define (fib n)
(cond ((=n 0
((=n1
(else (+

0)
1)
(fib (- n 1))
(fib (- n 2))))))
Consider the pattern of this computation. To compute (fib 5), we com-
pute (fib 4) and (fib 3). To compute (fib 4), we compute (fib 3)
and (fib 2). In general, the evolved process looks like a tree, as shown in

)
)
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Figure 1.5. Notice that the branches split into two at each level (except at
the bottom); this reflects the fact that the fib procedure calls itself twice
each time it is invoked.

This procedure is instructive as a prototypical tree recursion, but it is a
terrible way to compute Fibonacci numbers because it does so much re-
dundant computation. Notice in Figure 1.5 that the entire computation
of (fib 3)—almost half the work—is duplicated. In fact, it is not hard
to show that the number of times the procedure will compute (fib 1) or
(fib 0) (the number of leaves in the above tree, in general) is precisely
Fib(n 4 1). To get an idea of how bad this is, one can show that the value
of Fib(n) grows exponentially with n. More precisely (see Exercise 1.13),
Fib(n) is the closest integer to ¢"/v/5, where

1++v5
Q= 2\/_ =~ 1.6180
is the golden ratio, which satisfies the equation
¢°=¢p+1

b1
o
 fib 2} :"'-._fib 1 ifib1 ifib 0 ifib 1. "'-.:Ifib 0 ' ‘

/\ FA N O I A O A S S
S UV T U R A R T A R I

Fib1 fibOh S S
I
1 e f
‘ D g S

Figure 1.5: The tree-recursive process generated in computing
(fib 5).
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Thus, the process uses a number of steps that grows exponentially with
the input. On the other hand, the space required grows only linearly with
the input, because we need keep track only of which nodes are above us in
the tree at any point in the computation. In general, the number of steps
required by a tree-recursive process will be proportional to the number of
nodes in the tree, while the space required will be proportional to the max-
imum depth of the tree.

We can also formulate an iterative process for computing the Fibonacci
numbers. The idea is to use a pair of integers a and b, initialized to Fib(1) =
1 and Fib(0) =0, and to repeatedly apply the simultaneous transformations

a—a+b>b

b—a

Itis not hard to show that, after applying this transformation » times, a and
b will be equal, respectively, to Fib(n41) and Fib(n). Thus, we can compute
Fibonacci numbers iteratively using the procedure
(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))
This second method for computing Fib(n) is a linear iteration. The dif-
ference in number of steps required by the two methods—one linear in n,
one growing as fast as Fib(n) itself—is enormous, even for small inputs.

One should not conclude from this that tree-recursive processes are use-
less. When we consider processes that operate on hierarchically struc-
tured data rather than numbers, we will find that tree recursion is a natural

and powerful tool.3? But even in numerical operations, tree-recursive pro-

32 An example of this was hinted at in Section 1.1.3: The interpreter itself evaluates
expressions using a tree-recursive process.
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cesses can be useful in helping us to understand and design programs. For
instance, although the first fib procedure is much less efficient than the
second one, it is more straightforward, being little more than a translation
into Lisp of the definition of the Fibonacci sequence. To formulate the iter-
ative algorithm required noticing that the computation could be recast as
an iteration with three state variables.

Example: Counting change

It takes only a bit of cleverness to come up with the iterative Fibonacci al-
gorithm. In contrast, consider the following problem: How many differ-
ent ways can we make change of $1.00, given half-dollars, quarters, dimes,
nickels, and pennies? More generally, can we write a procedure to compute
the number of ways to change any given amount of money?

This problem has a simple solution as a recursive procedure. Suppose
we think of the types of coins available as arranged in some order. Then
the following relation holds:

The number of ways to change amount a using n kinds of coins equals

» the number of ways to change amount a using all but the first kind of
coin, plus

e the number of ways to change amount a — d using all n kinds of coins,
where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be
divided into two groups: those that do not use any of the first kind of coin,
and those that do. Therefore, the total number of ways to make change
for some amount is equal to the number of ways to make change for the
amount without using any of the first kind of coin, plus the number of ways
to make change assuming that we do use the first kind of coin. But the latter
number is equal to the number of ways to make change for the amount that
remains after using a coin of the first kind.

Thus, we can recursively reduce the problem of changing a given
amount to the problem of changing smaller amounts using fewer kinds of
coins. Consider this reduction rule carefully, and convince yourself that we
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can use it to describe an algorithm if we specify the following degenerate

cases: 33

e If a is exactly 0, we should count that as 1 way to make change.
e If aisless than 0, we should count that as 0 ways to make change.

e If nis 0, we should count that as 0 ways to make change.

We can easily translate this description into a recursive procedure:

(define (count-change amount)
(cc amount 5))
(define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(else (+ (cc amount
(- kinds-of-coins 1))
(cc (- amount
(first-denomination kinds-of-coins))
kinds-of-coins)))))
irst-denomination kinds-of-coins)
= kinds-of-coins 1) 1)

(define (f
(=
(= kinds-of-coins 2) 5)
(=
(=

(cond

kinds-of-coins 3) 10)
= kinds-of-coins 4) 25)
(= kinds-of-coins 5) 50)))

(The first-denomination procedure takes as input the number of kinds
of coins available and returns the denomination of the first kind. Here we
are thinking of the coins as arranged in order from largest to smallest, but
any order would do as well.) We can now answer our original question
about changing a dollar:

(
(
(
(
(
(

(count-change 100)
292

33 For example, work through in detail how the reduction rule applies to the problem
of making change for 10 cents using pennies and nickels.
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Count-change generates a tree-recursive process with redundancies
similar to those in our first implementation of fib. (It will take quite a
while for that 292 to be computed.) On the other hand, it is not obvious
how to design a better algorithm for computing the result, and we leave
this problem as a challenge. The observation that a tree-recursive process
may be highly inefficient but often easy to specify and understand has led
people to propose that one could get the best of both worlds by designing
a “smart compiler” that could transform tree-recursive procedures into
more efficient procedures that compute the same result.>*

Exercise 1.11: A function f is defined by the rule that f(n) = n if
n<3and f(n)= f(n-1)+2f(n—-2)+3f(n—-3)if n = 3. Writea
procedure that computes f by means of a recursive process. Write
a procedure that computes f by means of an iterative process.

Exercise 1.12: The following pattern of numbers is called Pascal’s
triangle.

1 4 o6 4 1

The numbers at the edge of the triangle are all 1, and each number
inside the triangle is the sum of the two numbers above it.>®> Write

34 One approach to coping with redundant computations is to arrange matters so that
we automatically construct a table of values as they are computed. Each time we are
asked to apply the procedure to some argument, we first look to see if the value is
already stored in the table, in which case we avoid performing the redundant com-
putation. This strategy, known as tabulation or memoization, can be implemented
in a straightforward way. Tabulation can sometimes be used to transform processes
that require an exponential number of steps (such as count - change) into processes

whose space and time requirements grow linearly with the input. See Exercise 3.27.

35 The elements of Pascal’s triangle are called the binomial coefficients, because the

n™ row consists of the coefficients of the terms in the expansion of (x + y)”. This
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a procedure that computes elements of Pascal’s triangle by means
of a recursive process.

Exercise 1.13: Prove that Fib(n) is the closest integer to ¢"/+/5,
where ¢ = (1 + v/5)/2. Hint: Let v = (1 — v/5)/2. Use induction
and the definition of the Fibonacci numbers (see Section 1.2.2) to
prove that Fib(n) = (¢" — v")/V/5.

1.2.3 Orders of Growth

The previous examples illustrate that processes can differ considerably in
the rates at which they consume computational resources. One convenient
way to describe this difference is to use the notion of order of growth to
obtain a gross measure of the resources required by a process as the inputs
become larger.

Let n be a parameter that measures the size of the problem, and let R(n)
be the amount of resources the process requires for a problem of size n.
In our previous examples we took n to be the number for which a given
function is to be computed, but there are other possibilities. For instance,
if our goal is to compute an approximation to the square root of a number,
we might take 7 to be the number of digits accuracy required. For matrix
multiplication we might take n to be the number of rows in the matrices.
In general there are a number of properties of the problem with respect to
which it will be desirable to analyze a given process. Similarly, R(7n) might
measure the number of internal storage registers used, the number of el-
ementary machine operations performed, and so on. In computers that
do only a fixed number of operations at a time, the time required will be
proportional to the number of elementary machine operations performed.

pattern for computing the coefficients appeared in Blaise Pascal’s 1653 seminal
work on probability theory, Traité du triangle arithmétique. According to Knuth
(1973), the same pattern appears in the Szu-yuen Yii-chien (“The Precious Mirror
of the Four Elements”), published by the Chinese mathematician Chu Shih-chieh
in 1303, in the works of the twelfth-century Persian poet and mathematician Omar
Khayyam, and in the works of the twelfth-century Hindu mathematician Bhascara
Achérya.
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We say that R(7n) has order of growth O( f(n)), written R(n)=0O(f(n)) (pro-
nounced “theta of f(n)”), if there are positive constants k; and k, indepen-
dent of n such that k; f(n) < R(n) < k, f(n) for any sufficiently large value
of n. (In other words, for large n, the value R(n) is sandwiched between

kif(n)and ky f(n).)

For instance, with the linear recursive process for computing factorial
described in Section 1.2.1 the number of steps grows proportionally to the
input n. Thus, the steps required for this process grows as ©(n). We also
saw that the space required grows as ©(n). For the iterative factorial, the
number of steps is still ©(n) but the space is ©(1)—that is, constant.>® The
tree-recursive Fibonacci computation requires ©(¢") steps and space ©(n),
where ¢ is the golden ratio described in Section 1.2.2.

Orders of growth provide only a crude description of the behavior of a
process. For example, a process requiring n° steps and a process requiring
100072 steps and a process requiring 31 + 10n + 17 steps all have ©(n?)
order of growth. On the other hand, order of growth provides a useful indi-
cation of how we may expect the behavior of the process to change as we
change the size of the problem. For a O(n) (linear) process, doubling the
size will roughly double the amount of resources used. For an exponential
process, each increment in problem size will multiply the resource utiliza-
tion by a constant factor. In the remainder of Section 1.2 we will examine
two algorithms whose order of growth is logarithmic, so that doubling the
problem size increases the resource requirement by a constant amount.

Exercise 1.14: Draw the tree illustrating the process generated by
the count - change procedure of Section 1.2.2 in making change for

36 These statements mask a great deal of oversimplification. For instance, if we
count process steps as “machine operations” we are making the assumption that
the number of machine operations needed to perform, say, a multiplication is
independent of the size of the numbers to be multiplied, which is false if the
numbers are sufficiently large. Similar remarks hold for the estimates of space.
Like the design and description of a process, the analysis of a process can be
carried out at various levels of abstraction.
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steps used by this process as the amount to be changed increases?
Exercise 1.15: The sine of an angle (specified in radians) can be
computed by making use of the approximation sinx = x if x is
sufficiently small, and the trigonometric identity

sin x = SSinf — 4sinSE

3 3

to reduce the size of the argument of sin. (For purposes of this ex-
ercise an angle is considered “sufficiently small” if its magnitude is
not greater than 0.1 radians.) These ideas are incorporated in the
following procedures:

(define (cube x) (*x x X X))
(define (p x) (- (*x 3 x) (x 4 (cube x))))

(define (sine angle)
(if (not (> (abs angle) 0.1))
angle
(p (sine (/ angle 3.0)))))
a. How many times is the procedure p applied when (sine
12.15) is evaluated?
b. What is the order of growth in space and number of steps (as a
function of a) used by the process generated by the sine proce-
dure when (sine a) is evaluated?

1.2.4 Exponentiation

Consider the problem of computing the exponential of a given number.
We would like a procedure that takes as arguments a base b and a positive
integer exponent n and computes b". One way to do this is via the recursive
definition

bn:b'bn_l
=1

73
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which translates readily into the procedure
(define (expt b n)
(if (= n 0)
1
(* b (expt b (- n1)))))

This is a linear recursive process, which requires ©(n) steps and O(n)
space. Just as with factorial, we can readily formulate an equivalent linear
iteration:

(define (expt b n)
(expt-iter b n 1))

(define (expt-iter b counter product)
(if (= counter 0)
product
(expt-iter b
(- counter 1)
(* b product))))
This version requires O(7) steps and O(1) space.

We can compute exponentials in fewer steps by using successive squar-
ing. For instance, rather than computing b® as

b-(b-(b-(b-(b-(b-(b-D))))

we can compute it using three multiplications:

b*=b-b
b* = b* - b
v’ =b*-b*

This method works fine for exponents that are powers of 2. We can also take
advantage of successive squaring in computing exponentials in general if

we use the rule
b = (b"?)? if 1 is even

p"=b-b""  ifnisodd
We can express this method as a procedure:
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(define
(cond

fast-expt b n)

(=no0) 1)

(even? n) (square (fast-expt b (/ n 2))))
else (x b (fast-expt b (- n 1))))))

o~ e e~ e~

where the predicate to test whether an integer is even is defined in terms of
the primitive procedure remainder by

(define (even? n)
(= (remainder n 2) 0))

The process evolved by fast-expt grows logarithmically with » in both
space and number of steps. To see this, observe that computing b*" using
fast-expt requires only one more multiplication than computing b". The
size of the exponent we can compute therefore doubles (approximately)
with every new multiplication we are allowed. Thus, the number of mul-
tiplications required for an exponent of n grows about as fast as the loga-
rithm of 7 to the base 2. The process has ©(log n) growth.3”

The difference between O(log n) growth and O(n) growth becomes strik-
ing as n becomes large. For example, fast-expt for n = 1000 requires only
14 multiplications.® It is also possible to use the idea of successive squar-
ing to devise an iterative algorithm that computes exponentials with a log-
arithmic number of steps (see Exercise 1.16), although, as is often the case

37 More precisely, the number of multiplications required is equal to 1 less than the
log base 2 of n plus the number of ones in the binary representation of . This total
is always less than twice the log base 2 of n. The arbitrary constants k; and k» in
the definition of order notation imply that, for a logarithmic process, the base to
which logarithms are taken does not matter, so all such processes are described as
O(log n).

38 You may wonder why anyone would care about raising numbers to the 1000th
power. See Section 1.2.6.
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with iterative algorithms, this is not written down so straightforwardly as
the recursive algorithm.3"

Exercise 1.16: Design a procedure that evolves an iterative expo-
nentiation process that uses successive squaring and uses a loga-
rithmic number of steps, as does fast-expt. (Hint: Using the ob-
servation that (b’V?)?> = (b*)"'?, keep, along with the exponent n
and the base b, an additional state variable a, and define the state
transformation in such a way that the product ab” is unchanged
from state to state. At the beginning of the process a is taken to
be 1, and the answer is given by the value of a at the end of the
process. In general, the technique of defining an invariant quan-
tity that remains unchanged from state to state is a powerful way
to think about the design of iterative algorithms.)

Exercise 1.17: The exponentiation algorithms in this section are
based on performing exponentiation by means of repeated multi-
plication. In a similar way, one can perform integer multiplication
by means of repeated addition. The following multiplication pro-
cedure (in which it is assumed that our language can only add, not
multiply) is analogous to the expt procedure:

(define (* a b)
(if (= b 0)
0
(+a(xa (-Db1l)))))

This algorithm takes a number of steps that is linear in b. Now sup-
pose we include, together with addition, operations double, which
doubles an integer, and halve, which divides an (even) integer by
2. Using these, design a multiplication procedure analogous to
fast-expt that uses a logarithmic number of steps.

39 This iterative algorithm is ancient. It appears in the Chandah-sutra by Achérya
Pingala, written before 200 B.C. See Knuth 1981, section 4.6.3, for a full discussion
and analysis of this and other methods of exponentiation.
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Exercise 1.18: Using the results of Exercise 1.16 and Exercise 1.17,
devise a procedure that generates an iterative process for multiply-
ing two integers in terms of adding, doubling, and halving and uses
a logarithmic number of steps.4’

Exercise 1.19: There is a clever algorithm for computing the
Fibonacci numbers in a logarithmic number of steps. Recall the
transformation of the state variables a and b in the fib-iter
process of Section 1.2.2: a — a+ b and b — a. Call this
transformation T, and observe that applying T over and over
again n times, starting with 1 and 0, produces the pair Fib(n 4 1)
and Fib(n). In other words, the Fibonacci numbers are produced
by applying T", the n™ power of the transformation T, starting
with the pair (1, 0). Now consider T to be the special case of
p = 0 and g = 1 in a family of transformations T},,, where T,
transforms the pair (a, b) according to a — bqg + aq + ap and
b < bp + aq. Show that if we apply such a transformation T,
twice, the effect is the same as using a single transformation T},
of the same form, and compute p’ and ¢’ in terms of p and g.
This gives us an explicit way to square these transformations,
and thus we can compute T" using successive squaring, as in
the fast-expt procedure. Put this all together to complete the
following procedure, which runs in a logarithmic number of

steps:*!

(define (fib n)
(fib-iter 1 6 6 1 n))

40 This algorithm, which is sometimes known as the “Russian peasant method” of
multiplication, is ancient. Examples of its use are found in the Rhind Papyrus, one
of the two oldest mathematical documents in existence, written about 1700 B.C.
(and copied from an even older document) by an Egyptian scribe named A’h-mose.

41 This exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij
1990.
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(define (fib-iter a b p g count)
(cond ((= count 0) b)
((even? count)
(fib-iter a

b
(?7?) ; compute p’
(?7?) ; compute g’

(/ count 2)))
(else (fib-iter (+ (x b g) (*x a q) (x a p))
(+ (x b p) (xaq))
Y
q
(- count 1)))))

1.2.5 Greatest Common Divisors

The greatest common divisor (GCD) of two integers a and b is defined to
be the largest integer that divides both a and b with no remainder. For ex-
ample, the GCD of 16 and 28 is 4. In Chapter 2, when we investigate how to
implement rational-number arithmetic, we will need to be able to compute
GCDs in order to reduce rational numbers to lowest terms. (To reduce a ra-
tional number to lowest terms, we must divide both the numerator and the
denominator by their GCD. For example, 16/28 reduces to 4/7.) One way
to find the GCD of two integers is to factor them and search for common
factors, but there is a famous algorithm that is much more efficient.

The idea of the algorithm is based on the observation that, if r is the re-
mainder when a is divided by b, then the common divisors of a and b are
precisely the same as the common divisors of b and r. Thus, we can use
the equation

GCD(a,b) = GCD(b,r)

to successively reduce the problem of computing a GCD to the problem of
computing the GCD of smaller and smaller pairs of integers. For example,

GCD(206,40) = GCD(40,6)
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= GCD(6,4)

= GCD(4,2)

= GCD(2,0)

= 2
reduces GCD(206, 40) to GCD(2, 0), which is 2. It is possible to show that
starting with any two positive integers and performing repeated reductions
will always eventually produce a pair where the second number is 0. Then
the GCD is the other number in the pair. This method for computing the
GCD is known as Euclid’s Algorithm.*?

It is easy to express Euclid’s Algorithm as a procedure:
(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))

This generates an iterative process, whose number of steps grows as the
logarithm of the numbers involved.

The fact that the number of steps required by Euclid’s Algorithm has log-
arithmic growth bears an interesting relation to the Fibonacci numbers:

Lamé’s Theorem: If Euclid’s Algorithm requires k steps to compute
the GCD of some pair, then the smaller number in the pair must be
greater than or equal to the k" Fibonacci number.*

42 Buclid’s Algorithm is so called because it appears in Euclid’s Elements (Book 7, ca.
300 B.C.). According to Knuth (1973), it can be considered the oldest known non-
trivial algorithm. The ancient Egyptian method of multiplication (Exercise 1.18) is
surely older, but, as Knuth explains, Euclid’s algorithm is the oldest known to have

been presented as a general algorithm, rather than as a set of illustrative examples.

43 This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and

engineer known chiefly for his contributions to mathematical physics. To prove
the theorem, we consider pairs (ay, by), where a; = by, for which Euclid’s Algo-
rithm terminates in k steps. The proofis based on the claim that, if (ax+1, br+1) —
(ay, by) — (ay_1, by_1) are three successive pairs in the reduction process, then we
must have by4+1 = by + by_1. To verify the claim, consider that a reduction step is
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We can use this theorem to get an order-of-growth estimate for Euclid’s
Algorithm. Let n be the smaller of the two inputs to the procedure. If the
process takes k steps, then we must have n = Fib(k) = ¢*/v/5. Therefore
the number of steps k grows as the logarithm (to the base ¢) of n. Hence,
the order of growth is O(log n).

Exercise 1.20: The process that a procedure generates is of course
dependent on the rules used by the interpreter. As an example,
consider the iterative gcd procedure given above. Suppose we
were to interpret this procedure using normal-order evaluation,
as discussed in Section 1.1.5. (The normal-order-evaluation rule
for if is described in Exercise 1.5.) Using the substitution method
(for normal order), illustrate the process generated in evaluating
(gcd 206 40) and indicate the remainder operations that are
actually performed. How many remainder operations are actually
performed in the normal-order evaluation of (gcd 206 40)? In
the applicative-order evaluation?

1.2.6 Example: Testing for Primality

This section describes two methods for checking the primality of an integer
n, one with order of growth ©(y/n), and a “probabilistic” algorithm with

defined by applying the transformation ay_1 = by, by._1 = remainder of a; divided
by by. The second equation means that a, = gby + by._1 for some positive integer
q. And since g must be at least 1 we have ay = gby + by_1 = by + by_1. Butin the
previous reduction step we have byt = ay. Therefore, b1 = ax = by + by_1.
This verifies the claim. Now we can prove the theorem by induction on k, the num-
ber of steps that the algorithm requires to terminate. The result is true for k = 1,
since this merely requires that b be at least as large as Fib(1) = 1. Now, assume
that the result is true for all integers less than or equal to k and establish the result
for k + 1. Let (ax+1, bx+1) — (ax, bx) — (ax—1, bx—1) be successive pairs in the
reduction process. By our induction hypotheses, we have b;_; = Fib(k — 1) and
by = Fib(k). Thus, applying the claim we just proved together with the definition of
the Fibonacci numbers gives by41 = by + by_1 = Fib(k) + Fib(k — 1) = Fib(k + 1),
which completes the proof of Lamé’s Theorem.
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order of growth O(log n). The exercises at the end of this section suggest
programming projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated by problems
concerning prime numbers, and many people have worked on the prob-
lem of determining ways to test if numbers are prime. One way to test if a
number is prime is to find the number’s divisors. The following program
finds the smallest integral divisor (greater than 1) of a given number n. It
does this in a straightforward way, by testing n for divisibility by successive
integers starting with 2.

(define (smallest-divisor n)
(find-divisor n 2))

ind-divisor n test-divisor)

(define (f
(> (square test-divisor) n) n)
(
e

(
(cond (
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)

(= (remainder b a) 0))

We can test whether a number is prime as follows: 7 is prime if and only
if n is its own smallest divisor.

(define (prime? n)
(= n (smallest-divisor n)))

The end test for find-divisor is based on the fact that if 7 is not prime
it must have a divisor less than or equal to y/7.** This means that the algo-
rithm need only test divisors between 1 and y/n. Consequently, the number
of steps required to identify z as prime will have order of growth ©(/n).

4 If d is a divisor of n, then so is n/d. But d and n/d cannot both be greater than /7.
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The Fermat test

The O(log n) primality test is based on a result from number theory known
as Fermat’s Little Theorem.*

Fermat'’s Little Theorem: If n is a prime number and a is any posi-
tive integer less than 7, then a raised to the n' power is congruent
to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the
same remainder when divided by n. The remainder of a number a when
divided by 7 is also referred to as the remainder of a modulo n, or simply
as a modulo n.)

If n is not prime, then, in general, most of the numbers a < n will not
satisfy the above relation. This leads to the following algorithm for testing
primality: Given a number #n, pick a random number a < n and compute
the remainder of a”” modulo n. If the result is not equal to a, then n is
certainly not prime. If it is a, then chances are good that n is prime. Now
pick another random number a and test it with the same method. If it also
satisfies the equation, then we can be even more confident that » is prime.
By trying more and more values of a, we can increase our confidence in the
result. This algorithm is known as the Fermat test.

To implement the Fermat test, we need a procedure that computes the
exponential of a number modulo another number:

45 pierre de Fermat (1601-1665) is considered to be the founder of modern number
theory. He obtained many important number-theoretic results, but he usually an-
nounced just the results, without providing his proofs. Fermat’s Little Theorem was
stated in a letter he wrote in 1640. The first published proof was given by Euler
in 1736 (and an earlier, identical proof was discovered in the unpublished manu-
scripts of Leibniz). The most famous of Fermat’s results—known as Fermat’s Last
Theorem—was jotted down in 1637 in his copy of the book Arithmetic (by the third-
century Greek mathematician Diophantus) with the remark “I have discovered a
truly remarkable proof, but this margin is too small to contain it.” Finding a proof
of Fermat’s Last Theorem became one of the most famous challenges in number
theory. A complete solution was finally given in 1995 by Andrew Wiles of Princeton
University.
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(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (square (expmod base (/ exp 2) m))
m))
(else
(remainder (* base (expmod base (- exp 1) m))

m))))

This is very similar to the fast-expt procedure of Section 1.2.4. It uses
successive squaring, so that the number of steps grows logarithmically with
the exponent.*®

The Fermat test is performed by choosing at random a number a be-
tween 1 and n — 1 inclusive and checking whether the remainder modulo
n of the n'™ power of a is equal to a. The random number a is chosen us-
ing the procedure random, which we assume is included as a primitive in
Scheme. Random returns a nonnegative integer less than its integer input.
Hence, to obtain a random number between 1 and n — 1, we call random
with an input of 7 — 1 and add 1 to the result:

(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))

46 The reduction steps in the cases where the exponent e is greater than 1 are based
on the fact that, for any integers x, y, and m, we can find the remainder of x times y
modulo m by computing separately the remainders of x modulo m and y modulo
m, multiplying these, and then taking the remainder of the result modulo m. For
instance, in the case where e is even, we compute the remainder of b*/ 2 modulo m,
square this, and take the remainder modulo m. This technique is useful because it
means we can perform our computation without ever having to deal with numbers
much larger than m. (Compare Exercise 1.25.)
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The following procedure runs the test a given number of times, as spec-
ified by a parameter. Its value is true if the test succeeds every time, and
false otherwise.

(define
(cond

(fast-prime? n times)

((= times 0) true)

((fermat-test n) (fast-prime? n (- times 1)))
(else false)))

Probabilistic methods

The Fermat test differs in character from most familiar algorithms, in
which one computes an answer that is guaranteed to be correct. Here,
the answer obtained is only probably correct. More precisely, if n ever
fails the Fermat test, we can be certain that n is not prime. But the fact
that n passes the test, while an extremely strong indication, is still not
a guarantee that n is prime. What we would like to say is that for any
number n, if we perform the test enough times and find that n always
passes the test, then the probability of error in our primality test can be
made as small as we like.

Unfortunately, this assertion is not quite correct. There do exist numbers
that fool the Fermat test: numbers n that are not prime and yet have the
property that a” is congruent to a modulo 7 for all integers a < n. Such
numbers are extremely rare, so the Fermat test is quite reliable in prac-
tice.’

47 Numbers that fool the Fermat test are called Carmichael numbers, and little
is known about them other than that they are extremely rare. There are 255
Carmichael numbers below 100,000,000. The smallest few are 561, 1105, 1729,
2465, 2821, and 6601. In testing primality of very large numbers chosen at random,
the chance of stumbling upon a value that fools the Fermat test is less than the
chance that cosmic radiation will cause the computer to make an error in carrying
out a “correct” algorithm. Considering an algorithm to be inadequate for the first
reason but not for the second illustrates the difference between mathematics and
engineering.
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There are variations of the Fermat test that cannot be fooled. In these
tests, as with the Fermat method, one tests the primality of an integer n
by choosing a random integer a < n and checking some condition that
depends upon n and a. (See Exercise 1.28 for an example of such a test.)
On the other hand, in contrast to the Fermat test, one can prove that, for
any n, the condition does not hold for most of the integers a < n unless
n is prime. Thus, if n passes the test for some random choice of a, the
chances are better than even that n is prime. If n passes the test for two
random choices of a, the chances are better than 3 out of 4 that n is prime.
By running the test with more and more randomly chosen values of a we
can make the probability of error as small as we like.

The existence of tests for which one can prove that the chance of error
becomes arbitrarily small has sparked interest in algorithms of this type,
which have come to be known as probabilistic algorithms. There is a great
deal of research activity in this area, and probabilistic algorithms have been
fruitfully applied to many fields.*?

Exercise 1.21: Use the smallest-divisor procedure to find the
smallest divisor of each of the following numbers: 199, 1999, 19999.

Exercise 1.22: Most Lisp implementations include a primitive
called runtime that returns an integer that specifies the amount
of time the system has been running (measured, for example,
in microseconds). The following timed-prime-test procedure,
when called with an integer n, prints n and checks to see if n is

48 One of the most striking applications of probabilistic prime testing has been to the
field of cryptography. Although it is now computationally infeasible to factor an
arbitrary 200-digit number, the primality of such a number can be checked in a
few seconds with the Fermat test. This fact forms the basis of a technique for con-
structing “unbreakable codes” suggested by Rivest et al. (1977). The resulting RSA
algorithm has become a widely used technique for enhancing the security of elec-
tronic communications. Because of this and related developments, the study of
prime numbers, once considered the epitome of a topic in “pure” mathematics to
be studied only for its own sake, now turns out to have important practical applica-
tions to cryptography, electronic funds transfer, and information retrieval.



prime. If n is prime, the procedure prints three asterisks followed
by the amount of time used in performing the test.
(define (timed-prime-test n)
(newline)
(display n)
(start-prime-test n (runtime)))
(define (start-prime-test n start-time)
(i1f (prime? n)
(report-prime (- (runtime) start-time))))
(define (report-prime elapsed-time)
(display " *xxx ")
(display elapsed-time))
Using this procedure, write a procedure search-for-primes that
checks the primality of consecutive odd integers in a specified
range. Use your procedure to find the three smallest primes larger
than 1000; larger than 10,000; larger than 100,000; larger than
1,000,000. Note the time needed to test each prime. Since the
testing algorithm has order of growth of ©(y/7), you should expect
that testing for primes around 10,000 should take about v/10 times
as long as testing for primes around 1000. Do your timing data
bear this out? How well do the data for 100,000 and 1,000,000
support the O(y/n) prediction? Is your result compatible with the
notion that programs on your machine run in time proportional
to the number of steps required for the computation?

Exercise 1.23: The smallest-divisor procedure shown at the
start of this section does lots of needless testing: After it checks to
see if the number is divisible by 2 there is no point in checking to
see if it is divisible by any larger even numbers. This suggests that
the values used for test-divisor should not be 2, 3, 4, 5, 6, .. .,
butrather 2, 3,5,7,9, .. .. Toimplement this change, define a pro-
cedure next that returns 3 if its input is equal to 2 and otherwise
returns its input plus 2. Modify the smallest-divisor procedure
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to use (next test-divisor) instead of (+ test-divisor 1).
With timed-prime-test incorporating this modified version of
smallest-divisor, run the test for each of the 12 primes found
in Exercise 1.22. Since this modification halves the number of
test steps, you should expect it to run about twice as fast. Is this
expectation confirmed? If not, what is the observed ratio of the
speeds of the two algorithms, and how do you explain the fact that
it is different from 2?

Exercise 1.24: Modify the timed-prime-test procedure of
Exercise 1.22 to use fast-prime? (the Fermat method), and test
each of the 12 primes you found in that exercise. Since the Fermat
test has ©(log n) growth, how would you expect the time to test
primes near 1,000,000 to compare with the time needed to test
primes near 1000? Do your data bear this out? Can you explain
any discrepancy you find?

Exercise 1.25: Alyssa P. Hacker complains that we went to a lot of
extra work in writing expmod. After all, she says, since we already
know how to compute exponentials, we could have simply written

(define (expmod base exp m)
(remainder (fast-expt base exp) m))

Is she correct? Would this procedure serve as well for our fast prime
tester? Explain.

Exercise 1.26: Louis Reasoner is having great difficulty doing
Exercise 1.24. His fast-prime? test seems to run more slowly than
his prime? test. Louis calls his friend Eva Lu Ator over to help.
When they examine Louis’s code, they find that he has rewritten
the expmod procedure to use an explicit multiplication, rather than
calling square:

(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
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(remainder (* (expmod base (/ exp 2) m)
(expmod base (/ exp 2) m))
m))
(else
(remainder (* base (expmod base
(- exp 1)
m))
m))))

“I don’t see what difference that could make,” says Louis. “I do.”
says Eva. “By writing the procedure like that, you have transformed
the O(log n) process into a O(n) process.” Explain.

Exercise 1.27: Demonstrate that the Carmichael numbers listed in
Footnote 1.47 really do fool the Fermat test. That is, write a proce-
dure that takes an integer n and tests whether a” is congruent to
a modulo 7 for every a < n, and try your procedure on the given
Carmichael numbers.

Exercise 1.28: One variant of the Fermat test that cannot be fooled
is called the Miller-Rabin test (Miller 1976; Rabin 1980). This starts
from an alternate form of Fermat’s Little Theorem, which states
thatif n is a prime number and a is any positive integer less than n,
then a raised to the (n — 1)-st power is congruent to 1 modulo 7. To
test the primality of a number 7 by the Miller-Rabin test, we pick a
random number a < n and raise a to the (n — 1)-st power modulo
n using the expmod procedure. However, whenever we perform the
squaring step in expmod, we check to see if we have discovered a
“nontrivial square root of 1 modulo n,” that is, a number not equal
to 1 or n — 1 whose square is equal to 1 modulo 7. It is possible to
prove that if such a nontrivial square root of 1 exists, then 7 is not
prime. It is also possible to prove that if 7 is an odd number that
is not prime, then, for at least half the numbers a < n, computing
a1 in this way will reveal a nontrivial square root of 1 modulo 7.
(This is why the Miller-Rabin test cannot be fooled.) Modify the
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expmod procedure to signal if it discovers a nontrivial square root
of 1, and use this to implement the Miller-Rabin test with a proce-
dure analogous to fermat-test. Check your procedure by testing
various known primes and non-primes. Hint: One convenient way
to make expmod signal is to have it return 0.

1.3 Formulating Abstractions with Higher-Order
Procedures

We have seen that procedures are, in effect, abstractions that describe com-
pound operations on numbers independent of the particular numbers. For
example, when we

(define (cube x) (*x x x X))

we are not talking about the cube of a particular number, but rather about
a method for obtaining the cube of any number. Of course we could get
along without ever defining this procedure, by always writing expressions
such as

(x 3 3 3)

(*» X X x)

(xyyy)
and never mentioning cube explicitly. This would place us at a serious dis-
advantage, forcing us to work always at the level of the particular opera-
tions that happen to be primitives in the language (multiplication, in this
case) rather than in terms of higher-level operations. Our programs would
be able to compute cubes, but our language would lack the ability to ex-
press the concept of cubing. One of the things we should demand from
a powerful programming language is the ability to build abstractions by
assigning names to common patterns and then to work in terms of the ab-
stractions directly. Procedures provide this ability. This is why all but the
most primitive programming languages include mechanisms for defining
procedures.

Yet even in numerical processing we will be severely limited in our ability
to create abstractions if we are restricted to procedures whose parameters
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must be numbers. Often the same programming pattern will be used with
a number of different procedures. To express such patterns as concepts, we
will need to construct procedures that can accept procedures as arguments
or return procedures as values. Procedures that manipulate procedures are
called higher-order procedures. This section shows how higher-order pro-
cedures can serve as powerful abstraction mechanisms, vastly increasing
the expressive power of our language.

1.3.1 Procedures as Arguments

Consider the following three procedures. The first computes the sum of the
integers from a through b:
(define (sum-integers a b)
(if (> ab) 0 (+ a (sum-integers (+ a 1) b))))
The second computes the sum of the cubes of the integers in the given
range:
(define (sum-cubes a b)
(if (> a b) 0 (+ (cube a) (sum-cubes (+ a 1) b))))

The third computes the sum of a sequence of terms in the series

1 1 1

+ + + ...
1-3 5-7 9-11

which converges to /8 (very slowly):*
(define (pi-sum a b)
(if (> a b)
0
(+ (/ 1.0 (x a (+ a 2))) (pi-sum (+ a 4) b))))
These three procedures clearly share a common underlying pattern.

They are for the most part identical, differing only in the name of the
procedure, the function of a used to compute the term to be added, and

49 This series, usually written in the equivalent form T=1- % + % - % + ..., is due
to Leibniz. We'll see how to use this as the basis for some fancy numerical tricks in
Section 3.5.3.
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the function that provides the next value of a. We could generate each of
the procedures by filling in slots in the same template:

(define ({name) a b)
(if (> a b)
0
(+ ((term) a)
({name) ({next) a) b))))

The presence of such a common pattern is strong evidence that there is
a useful abstraction waiting to be brought to the surface. Indeed, mathe-
maticians long ago identified the abstraction of summation of a series and
invented “sigma notation,” for example

b
> fm)= fl@)+...+ f(b)

to express this concept. The power of sigma notation is that it allows
mathematicians to deal with the concept of summation itself rather than
only with particular sums—for example, to formulate general results
about sums that are independent of the particular series being summed.

Similarly, as program designers, we would like our language to be pow-
erful enough so that we can write a procedure that expresses the concept
of summation itself rather than only procedures that compute particular
sums. We can do so readily in our procedural language by taking the com-
mon template shown above and transforming the “slots” into formal pa-
rameters:

(define (sum term a next b)
(if (> a b)
0
(+ (term a)
(sum term (next a) next b))))

Notice that sum takes as its arguments the lower and upper bounds a and
b together with the procedures term and next. We can use sum just as we
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would any procedure. For example, we can use it (along with a procedure
inc that increments its argument by 1) to define sum- cubes:

(define (inc n) (+ n 1))

(define (sum-cubes a b)
(sum cube a inc b))

Using this, we can compute the sum of the cubes of the integers from 1
to 10:

(sum-cubes 1 10)
3025

With the aid of an identity procedure to compute the term, we can define
sum-integers in terms of sum:

(define (identity x) x)

(define (sum-integers a b)
(sum identity a inc b))
Then we can add up the integers from 1 to 10:
(sum-integers 1 10)
55
We can also define pi-sum in the same way:>°
(define (pi-sum a b)
(define (pi-term x)
(/1.0 (x x (+ x 2))))
(define (pi-next x)
(+ x 4))
(sum pi-term a pi-next b))

Using these procedures, we can compute an approximation to :

50 Notice that we have used block structure (Section 1.1.8) to embed the definitions
of pi-next and pi-term within pi-sum, since these procedures are unlikely to be

useful for any other purpose. We will see how to get rid of them altogether in Section
1.3.2.



95

(* 8 (pi-sum 1 1000))
3.139592655589783
Once we have sum, we can use it as a building block in formulating further
concepts. For instance, the definite integral of a function f between the
limits a and b can be approximated numerically using the formula

fbf= [f(OH-%)+f(a+dx+%)+f(a+2dx+%)+...] dx

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sum f (+ a (/ dx 2.0)) add-dx b) dx))

(integral cube 0 1 0.01)
.24998750000000042

(integral cube 0 1 0.001)
.249999875000001

(The exact value of the integral of cube between 0 and 1 is 1/4.)

Exercise 1.29: Simpson’s Rule is a more accurate method of numer-
ical integration than the method illustrated above. Using Simp-
son’s Rule, the integral of a function f between a and b is approxi-
mated as

h
g(yo +4y1+ 2y, +4y3+2ys+ ...+ 2y, 20 +4y,-1 + yn)

where h = (b — a)/n, for some even integer n, and y; = f(a+ kh).
(Increasing n increases the accuracy of the approximation.) Define
a procedure that takes as arguments f, a, b, and n and returns the
value of the integral, computed using Simpson’s Rule. Use your
procedure to integrate cube between 0 and 1 (with n = 100 and n =
1000), and compare the results to those of the integral procedure
shown above.
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Exercise 1.30: The sum procedure above generates a linear recur-
sion. The procedure can be rewritten so that the sum is performed
iteratively. Show how to do this by filling in the missing expressions
in the following definition:

(define (sum term a next b)
(define (iter a result)
(if (??2)
(??)
(iter (??2) (?72))))
(iter (?7) (?7)))
Exercise 1.31:

a. The sum procedure is only the simplest of a vast number of
similar abstractions that can be captured as higher-order
procedures.”! Write an analogous procedure called product
that returns the product of the values of a function at points
over a given range. Show how to define factorial in terms of
product. Also use product to compute approximations to x
using the formula®?

T 2:4-4-6-6-8...

4 3.3-5-5-7-7...

b. If your product procedure generates a recursive process, write

51 The intent of Exercise 1.31 through Exercise 1.33 is to demonstrate the expressive
power that is attained by using an appropriate abstraction to consolidate many
seemingly disparate operations. However, though accumulation and filtering are
elegant ideas, our hands are somewhat tied in using them at this point since we do
not yet have data structures to provide suitable means of combination for these ab-
stractions. We will return to these ideas in Section 2.2.3 when we show how to use
sequences as interfaces for combining filters and accumulators to build even more
powerful abstractions. We will see there how these methods really come into their
own as a powerful and elegant approach to designing programs.

52 This formula was discovered by the seventeenth-century English mathematician
John Wallis.



one that generates an iterative process. If it generates an itera-
tive process, write one that generates a recursive process.

Exercise 1.32:

d.

Show that sumand product (Exercise 1.31) are both special cases
of a still more general notion called accumulate that combines a
collection of terms, using some general accumulation function:

(accumulate combiner null-value term a next b)

Accumulate takes as arguments the same term and range spec-
ifications as sum and product, together with a combiner proce-
dure (of two arguments) that specifies how the current term is
to be combined with the accumulation of the preceding terms
and a null-value that specifies what base value to use when
the terms run out. Write accumulate and show how sum and
product can both be defined as simple calls to accumulate.

If your accumulate procedure generates a recursive process,
write one that generates an iterative process. If it generates an
iterative process, write one that generates a recursive process.

Exercise 1.33: You can obtain an even more general version
of accumulate (Exercise 1.32) by introducing the notion of a
filter on the terms to be combined. That is, combine only those
terms derived from values in the range that satisfy a specified
condition. = The resulting filtered-accumulate abstraction
takes the same arguments as accumulate, together with an
additional predicate of one argument that specifies the filter.
Write filtered-accumulate as a procedure. Show how to express
the following using filtered-accumulate:

a.

the sum of the squares of the prime numbers in the interval a to
b (assuming that you have a prime? predicate already written)

the product of all the positive integers less than n that are
relatively prime to n (i.e., all positive integers i < n such that
GCD(i, n)=1).

97
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1.3.2 Constructing Procedures Using Lambda

In using sum as in Section 1.3.1, it seems terribly awkward to have to define
trivial procedures such as pi-term and pi-next just so we can use them
as arguments to our higher-order procedure. Rather than define pi-next
and pi-term, it would be more convenient to have a way to directly specify
“the procedure that returns its input incremented by 4” and “the procedure
that returns the reciprocal of its input times its input plus 2.” We can do this
by introducing the special form lambda, which creates procedures. Using
lambda we can describe what we want as

(lambda (x) (+ x 4))
and
(Lambda (x) (/ 1.0 (x x (+ x 2))))

Then our pi-sum procedure can be expressed without defining any auxil-
iary procedures as

(define (pi-sum a b)
(sum (lambda (x) (/ 1.0 (x x (+ x 2))))
a
(Lambda (x) (+ x 4))
b))

Again using lambda, we can write the integral procedure without hav-
ing to define the auxiliary procedure add - dx:

(define (integral f a b dx)
(* (sum f (+ a (/ dx 2.0))
(lambda (x) (+ x dx))
b)
dx))

In general, lambda is used to create procedures in the same way as
define, except that no name is specified for the procedure:

(lambda ((formal-parameters)) (body))



99

The resulting procedure is just as much a procedure as one that is created
using define. The only difference is that it has not been associated with
any name in the environment. In fact,

(define (plus4 x) (+ x 4))
is equivalent to
(define plus4 (lambda (x) (+ x 4)))
We can read a Lambda expression as follows:

(lambda (x) (+ X 4))
| | | I |

the procedure of an argument x that adds x and 4

Like any expression that has a procedure as its value, a lambda expression
can be used as the operator in a combination such as

((lambda (x y z) (+ x y (square z))) 1 2 3)
12

or, more generally, in any context where we would normally use a proce-
dure name.”>

Using let to create local variables

Another use of lambda is in creating local variables. We often need local
variables in our procedures other than those that have been bound as for-
mal parameters. For example, suppose we wish to compute the function

foy)=x(1+xy+y1-y)+ 1 +xy)(1 - y)

53 1t would be clearer and less intimidating to people learning Lisp if a name more
obvious than lambda, such as make-procedure, were used. But the convention is
firmly entrenched. The notation is adopted from the A-calculus, a mathematical
formalism introduced by the mathematical logician Alonzo Church (1941). Church
developed the A-calculus to provide a rigorous foundation for studying the notions
of function and function application. The A-calculus has become a basic tool for
mathematical investigations of the semantics of programming languages.
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which we could also express as

a=1+xy
b=1-y
f(x,y)=xa*+ yb+ ab

In writing a procedure to compute f, we would like to include as local vari-
ables not only x and y but also the names of intermediate quantities like a
and b. One way to accomplish this is to use an auxiliary procedure to bind
the local variables:
(define (f x vy)
(define (f-helper a b)
(+ (x x (square a))
(x y b)
(x a b)))
(f-helper (+ 1 (x x vy))
(- 1y)))

Of course, we could use a lambda expression to specify an anonymous
procedure for binding our local variables. The body of f then becomes a
single call to that procedure:

(define (f x y)
((lambda (a b)
(+ (x x (square a))
(x y b)
(x ab)))
(+1 (x xy))
(- 1y)))
This construct is so useful that there is a special form called let to make
its use more convenient. Using let, the f procedure could be written as
(define (f x y)
(let ((a (+ 1 (x xy)))
(b (- 1vy)))
(+ (x x (square a))
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(x y b)
(x ab))))

The general form of a let expression is

(let (({vary) (expi1))
({vary) (exps))

({vary) (expy)))
(body))

which can be thought of as saying

let (vary) have the value (exp;) and
(varp) have the value {(exps) and

(var,) have the value (exp;)
in <(body)

The first part of the let expression is a list of name-expression pairs.
When the let is evaluated, each name is associated with the value of the
corresponding expression. The body of the let is evaluated with these
names bound as local variables. The way this happens is that the let ex-
pression is interpreted as an alternate syntax for

((Lambda ({vary) ... (vary))
(body))
(exp1)
(expn))
No new mechanism is required in the interpreter in order to provide lo-

cal variables. A let expression is simply syntactic sugar for the underlying
lambda application.

We can see from this equivalence that the scope of a variable specified by
a let expression is the body of the let. This implies that:

e Let allows one to bind variables as locally as possible to where they are
to be used. For example, if the value of x is 5, the value of the expression
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(+ (let ((x 3))
(+ x (x x 10)))
X)

is 38. Here, the x in the body of the let is 3, so the value of the let
expression is 33. On the other hand, the x that is the second argument
to the outermost + is still 5.

e The variables’ values are computed outside the let. This matters
when the expressions that provide the values for the local variables
depend upon variables having the same names as the local variables
themselves. For example, if the value of x is 2, the expression

(let ((x 3)
(y (+ x 2)))
(* xy))
will have the value 12 because, inside the body of the let, x will be 3 and
y will be 4 (which is the outer x plus 2).

Sometimes we can use internal definitions to get the same effect as with
Llet. For example, we could have defined the procedure f above as
(define (f x vy)
(define a (+ 1 (x x y)))
(define b (- 1 y))
(+ (x x (square a))
(x y b)
(x ab)))
We prefer, however, to use let in situations like this and to use internal
define only for internal procedures.’*

Exercise 1.34: Suppose we define the procedure

5% Understanding internal definitions well enough to be sure a program means what
we intend it to mean requires a more elaborate model of the evaluation process
than we have presented in this chapter. The subtleties do not arise with internal
definitions of procedures, however. We will return to this issue in Section 4.1.6,
after we learn more about evaluation.
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(define (f g)
(g 2))

Then we have

(f square)
4

(f (lambda (z) (x z (+ z 1))))
6

What happens if we (perversely) ask the interpreter to evaluate the
combination (f f)? Explain.

1.3.3 Procedures as General Methods

We introduced compound procedures in Section 1.1.4 as a mechanism for
abstracting patterns of numerical operations so as to make them indepen-
dent of the particular numbers involved. With higher-order procedures,
such as the integral procedure of Section 1.3.1, we began to see a more
powerful kind of abstraction: procedures used to express general meth-
ods of computation, independent of the particular functions involved. In
this section we discuss two more elaborate examples—general methods for
finding zeros and fixed points of functions—and show how these methods
can be expressed directly as procedures.

Finding roots of equations by the half-interval method

The half-interval method is a simple but powerful technique for finding
roots of an equation f(x) = 0, where f is a continuous function. The idea
is that, if we are given points a and b such that f(a) < 0 < f(b), then f must
have at least one zero between a and b. To locate a zero, let x be the average
of a and b and compute f(x). If f(x) > 0, then f must have a zero between
a and x. If f(x) <0, then f must have a zero between x and b. Continuing
in this way, we can identify smaller and smaller intervals on which f must
have a zero. When we reach a point where the interval is small enough,
the process stops. Since the interval of uncertainty is reduced by half at
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each step of the process, the number of steps required grows as ©(log(L/T)),
where L is the length of the original interval and T is the error tolerance
(that is, the size of the interval we will consider “small enough”). Here is a
procedure that implements this strategy:
(define (search f neg-point pos-point)
(let ((midpoint (average neg-point pos-point)))
(if (close-enough? neg-point pos-point)
midpoint
(let ((test-value (f midpoint)))
(cond ((positive? test-value)
(search f neg-point midpoint))
((negative? test-value)
(search f midpoint pos-point))
(else midpoint))))))

We assume that we are initially given the function f together with points
at which its values are negative and positive. We first compute the mid-
point of the two given points. Next we check to see if the given interval
is small enough, and if so we simply return the midpoint as our answer.
Otherwise, we compute as a test value the value of f at the midpoint. If
the test value is positive, then we continue the process with a new interval
running from the original negative point to the midpoint. If the test value
is negative, we continue with the interval from the midpoint to the positive
point. Finally, there is the possibility that the test value is 0, in which case
the midpoint is itself the root we are searching for.

To test whether the endpoints are “close enough” we can use a procedure
similar to the one used in Section 1.1.7 for computing square roots:>>

(define (close-enough? x y) (< (abs (- x y)) 0.001))

55 We have used 0.001 as a representative “small” number to indicate a tolerance for
the acceptable error in a calculation. The appropriate tolerance for a real calcula-
tion depends upon the problem to be solved and the limitations of the computer
and the algorithm. This is often a very subtle consideration, requiring help from a
numerical analyst or some other kind of magician.
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Search is awkward to use directly, because we can accidentally give it
points at which f’s values do not have the required sign, in which case we
get a wrong answer. Instead we will use search via the following procedure,
which checks to see which of the endpoints has a negative function value
and which has a positive value, and calls the search procedure accordingly.
If the function has the same sign on the two given points, the half-interval
method cannot be used, in which case the procedure signals an error.>®

(define (half-interval-method f a b)
(let ((a-value (f a))
(b-value (f b)))
(cond ((and (negative? a-value) (positive? b-value))
(search f a b))
((and (negative? b-value) (positive? a-value))
(search f b a))
(else
(error "Values are not of opposite sign" a b)))))
The following example uses the half-interval method to approximate n
as the root between 2 and 4 of sin x = 0:
(half-interval-method sin 2.0 4.0)
3.14111328125
Here is another example, using the half-interval method to search for a
root of the equation x° — 2x — 3 = 0 between 1 and 2:
(half-interval-method (lambda (x) (- (*x x x X) (*x 2 x) 3))
1.0
2.0)
1.89306640625

Finding fixed points of functions

A number x is called a fixed point of a function f if x satisfies the equation
f(x) = x. For some functions f we can locate a fixed point by beginning

56 This can be accomplished using error, which takes as arguments a number of
items that are printed as error messages.
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with an initial guess and applying f repeatedly,

fx), f(f(x), (X)),

until the value does not change very much. Using this idea, we can devise a
procedure fixed-point that takes as inputs a function and an initial guess
and produces an approximation to a fixed point of the function. We apply
the function repeatedly until we find two successive values whose differ-
ence is less than some prescribed tolerance:

(define tolerance 0.00001)

(define (fixed-point f first-guess)
(define (close-enough? vl v2)
(< (abs (- vl v2)) tolerance))
(define (try gquess)
(let ((next (f guess)))
(i1f (close-enough? guess next)
next
(try next))))
(try first-guess))

For example, we can use this method to approximate the fixed point of
the cosine function, starting with 1 as an initial approximation:>’

(fixed-point cos 1.0)
.7390822985224023

Similarly, we can find a solution to the equation y = sin y + cos y:

(fixed-point (lambda (y) (+ (sin y) (cos y))) 1.0)
1.2587315962971173

The fixed-point process is reminiscent of the process we used for find-
ing square roots in Section 1.1.7. Both are based on the idea of repeat-
edly improving a guess until the result satisfies some criterion. In fact, we

57 Try this during a boring lecture: Set your calculator to radians mode and then re-
peatedly press the cos button until you obtain the fixed point.
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can readily formulate the square-root computation as a fixed-point search.
Computing the square root of some number x requires finding a y such
that y> = x. Putting this equation into the equivalent form y = x/y, we
recognize that we are looking for a fixed point of the function®® y — x/y,
and we can therefore try to compute square roots as

(define (sqrt x)
(fixed-point (lambda (y) (/ x y)) 1.0))

Unfortunately, this fixed-point search does not converge. Consider an
initial guess y;. The next guess is y» = x/y; and the next guess is y3 =
x/y2 = x/(x/y1) = y1. This results in an infinite loop in which the two
guesses y; and y» repeat over and over, oscillating about the answer.

One way to control such oscillations is to prevent the guesses from
changing so much. Since the answer is always between our guess y and
x/y, we can make a new guess that is not as far from y as x/y by averaging
y with x/y, so that the next guess after y is %( y + x/y) instead of x/y. The
process of making such a sequence of guesses is simply the process of
looking for a fixed point of y — %(y + x/y):

(define (sqrt x)
(fixed-point (lambda (y) (average y (/ x y))) 1.0))

(Note that y = %( y + x/y) is a simple transformation of the equation y =
x/y; to derive it, add y to both sides of the equation and divide by 2.)

With this modification, the square-root procedure works. In fact, if we
unravel the definitions, we can see that the sequence of approximations to
the square root generated here is precisely the same as the one generated
by our original square-root procedure of Section 1.1.7. This approach of
averaging successive approximations to a solution, a technique that we call
average damping, often aids the convergence of fixed-point searches.

58, (pronounced “maps to”) is the mathematician’s way of writing lambda. y — x/y

means (lambda (y) (/ x y)), thatis, the function whose value at y is x/y.



Exercise 1.35: Show that the golden ratio ¢ (Section 1.2.2) is a fixed
point of the transformation x — 1 4+ 1/x, and use this fact to com-
pute ¢ by means of the fixed-point procedure.

Exercise 1.36: Modify fixed-point so that it prints the sequence
of approximations it generates, using the newline and display
primitives shown in Exercise 1.22. Then find a solution to
x* = 1000 by finding a fixed point of x — 1log(1000)/log(x).
(Use Scheme’s primitive log procedure, which computes natural
logarithms.) Compare the number of steps this takes with and
without average damping. (Note that you cannot start fixed-
point with a guess of 1, as this would cause division by log(1) = 0.)

Exercise 1.37:

a. An infinite continued fraction is an expression of the form

Ny

= N
D1+

Dy+

N3
D3+...

As an example, one can show that the infinite continued
fraction expansion with the N; and the D; all equal to 1
produces 1/, where ¢ is the golden ratio (described in Section
1.2.2). One way to approximate an infinite continued fraction is
to truncate the expansion after a given number of terms. Such
a truncation—a so-called k-term finite continued fraction—has
the form

Suppose that n and d are procedures of one argument (the term
index i) that return the N; and D; of the terms of the contin-
ued fraction. Define a procedure cont-frac such that evalu-
ating (cont-frac n d k) computes the value of the k-term fi-
nite continued fraction. Check your procedure by approximat-

ing 1/¢ using

108
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(cont-frac (lambda (i) 1.0)
(lambda (i) 1.0)
k)
for successive values of k. How large must you make k in order
to get an approximation that is accurate to 4 decimal places?

b. If your cont-frac procedure generates a recursive process,
write one that generates an iterative process. If it generates an
iterative process, write one that generates a recursive process.

Exercise 1.38: In 1737, the Swiss mathematician Leonhard Euler
published a memoir De Fractionibus Continuis, which included a
continued fraction expansion for e — 2, where e is the base of the
natural logarithms. In this fraction, the NNV; are all 1, and the D; are
successively 1, 2,1, 1,4,1,1,6, 1, 1, 8, .... Write a program that
uses your cont-frac procedure from Exercise 1.37 to approximate
e, based on Euler’s expansion.

Exercise 1.39: A continued fraction representation of the tangent
function was published in 1770 by the German mathematician J.H.

Lambert:
X

tan x =
1 - %

g_x

5-...

where x is in radians. Define a procedure (tan-cf x k) that com-
putes an approximation to the tangent function based on Lam-
bert’s formula. k specifies the number of terms to compute, as in
Exercise 1.37.

1.3.4 Procedures as Returned Values

The above examples demonstrate how the ability to pass procedures as ar-
guments significantly enhances the expressive power of our programming
language. We can achieve even more expressive power by creating proce-
dures whose returned values are themselves procedures.

We can illustrate this idea by looking again at the fixed-point example
described at the end of Section 1.3.3. We formulated a new version of the
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square-root procedure as a fixed-point search, starting with the observa-
tion that /x is a fixed-point of the function y — x/y. Then we used aver-
age damping to make the approximations converge. Average damping is a
useful general technique in itself. Namely, given a function f, we consider
the function whose value at x is equal to the average of x and f(x).

We can express the idea of average damping by means of the following
procedure:

(define (average-damp f)
(lambda (x) (average x (f x))))

Average-damp is a procedure that takes as its argument a procedure f
and returns as its value a procedure (produced by the lambda) that, when
applied to a number x, produces the average of x and (f x). For exam-
ple, applying average-damp to the square procedure produces a procedure
whose value at some number x is the average of x and x°. Applying this re-
sulting procedure to 10 returns the average of 10 and 100, or 55:°°

((average-damp square) 10)
55

Using average-damp, we can reformulate the square-root procedure as
follows:

(define (sqgrt x)
(fixed-point (average-damp (lambda (y) (/ x vy)))
1.0))

Notice how this formulation makes explicit the three ideas in the
method: fixed-point search, average damping, and the function y — x/y.
It is instructive to compare this formulation of the square-root method
with the original version given in Section 1.1.7. Bear in mind that these

59(Dbmnveﬂuuthmisaconﬂﬁnaﬁonmﬁmmeopenuormimeﬂaconﬂﬂnaﬂon.Exmtme
1.4 already demonstrated the ability to form such combinations, but that was only
a toy example. Here we begin to see the real need for such combinations—when
applying a procedure that is obtained as the value returned by a higher-order
procedure.
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procedures express the same process, and notice how much clearer the
idea becomes when we express the process in terms of these abstractions.
In general, there are many ways to formulate a process as a procedure.
Experienced programmers know how to choose procedural formulations
that are particularly perspicuous, and where useful elements of the
process are exposed as separate entities that can be reused in other
applications. As a simple example of reuse, notice that the cube root of x
is a fixed point of the function y — x/y?, so we can immediately generalize
our square-root procedure to one that extracts cube roots:%°

(define (cube-root x)
(fixed-point (average-damp (lambda (y) (/ x (square y))))
1.0))

Newton’s method

When we first introduced the square-root procedure, in Section 1.1.7, we
mentioned that this was a special case of Newron's method. If x — g(x) is
a differentiable function, then a solution of the equation g(x) = 0 is a fixed
point of the function x — f(x) where

g(x)
Dg(x)
and Dg(x) is the derivative of g evaluated at x. Newton’s method is the use

of the fixed-point method we saw above to approximate a solution of the
equation by finding a fixed point of the function f.°!

fx)=x-

For many functions g and for sufficiently good initial guesses for x, New-
ton’s method converges very rapidly to a solution of g(x) = 0.%2

60 See Exercise 1.45 for a further generalization.

61 Elementary calculus books usually describe Newton’s method in terms of the se-
quence of approximations x,+1 = x, — g(x,)/Dg(x,). Having language for talking
about processes and using the idea of fixed points simplifies the description of the
method.

62 Newton’s method does not always converge to an answer, but it can be shown that
in favorable cases each iteration doubles the number-of-digits accuracy of the ap-
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In order to implement Newton’s method as a procedure, we must first ex-
press the idea of derivative. Note that “derivative,” like average damping, is
something that transforms a function into another function. For instance,
the derivative of the function x — x> is the function x — 3x2 In general, if
g is a function and dx is a small number, then the derivative Dg of g is the
function whose value at any number x is given (in the limit of small dx) by

g(x + dx) — g(x)
dx

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001) as
the procedure

Dg(x) =

(define (deriv g)
(Lambda (x)
(/ (- (g (+ x dx)) (g x))
dx)))
along with the definition
(define dx 0.00001)

Like average-damp, deriv is a procedure that takes a procedure as argu-
ment and returns a procedure as value. For example, to approximate the
derivative of x — x3 at 5 (whose exact value is 75) we can evaluate

(define (cube x) (*x X X X))

((deriv cube) 5)
75.00014999664018
With the aid of deriv, we can express Newton’s method as a fixed-point
process:
(define (newton-transform g)
(Lambda (x)
(- x (/ (g x) ((deriv g) x)))))

proximation to the solution. In such cases, Newton’s method will converge much
more rapidly than the half-interval method.
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(define (newtons-method g guess)
(fixed-point (newton-transform g) guess))

The newton-transform procedure expresses the formula at the begin-
ning of this section, and newtons -method is readily defined in terms of this.
It takes as arguments a procedure that computes the function for which we
want to find a zero, together with an initial guess. For instance, to find the
square root of x, we can use Newton’s method to find a zero of the function
y — y? — x starting with an initial guess of 1.%3

This provides yet another form of the square-root procedure:

(define (sgrt x)
(newtons-method (lambda (y) (- (square y) x)) 1.0))

Abstractions and first-class procedures

We've seen two ways to express the square-root computation as an instance
of a more general method, once as a fixed-point search and once using
Newton’s method. Since Newton’s method was itself expressed as a fixed-
point process, we actually saw two ways to compute square roots as fixed
points. Each method begins with a function and finds a fixed point of some
transformation of the function. We can express this general idea itself as a
procedure:

(define (fixed-point-of-transform g transform guess)
(fixed-point (transform g) guess))

This very general procedure takes as its arguments a procedure g that
computes some function, a procedure that transforms g, and an initial
guess. The returned result is a fixed point of the transformed function.

Using this abstraction, we can recast the first square-root computation
from this section (where we look for a fixed point of the average-damped
version of y — x/y) as an instance of this general method:

(define (sqgrt x)

63 For finding square roots, Newton’s method converges rapidly to the correct solution
from any starting point.
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(fixed-point-of-transform (lambda (y) (/ x y))
average-damp
1.0))

Similarly, we can express the second square-root computation from this
section (an instance of Newton’s method that finds a fixed point of the New-
ton transform of y — y* — x) as

(define (sqgrt x)
(fixed-point-of-transform (lambda (y) (- (square y) X))
newton-transform
1.0))

We began Section 1.3 with the observation that compound procedures
are a crucial abstraction mechanism, because they permit us to express
general methods of computing as explicit elements in our programming
language. Now we've seen how higher-order procedures permit us to ma-
nipulate these general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the un-
derlying abstractions in our programs and to build upon them and gen-
eralize them to create more powerful abstractions. This is not to say that
one should always write programs in the most abstract way possible; ex-
pert programmers know how to choose the level of abstraction appropri-
ate to their task. But it is important to be able to think in terms of these
abstractions, so that we can be ready to apply them in new contexts. The
significance of higher-order procedures is that they enable us to represent
these abstractions explicitly as elements in our programming language, so
that they can be handled just like other computational elements.

In general, programming languages impose restrictions on the ways in
which computational elements can be manipulated. Elements with the
fewest restrictions are said to have first-class status. Some of the “rights
and privileges” of first-class elements are:%*

64 The notion of first-class status of programming-language elements is due to the
British computer scientist Christopher Strachey (1916-1975).
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They may be named by variables.

They may be passed as arguments to procedures.

They may be returned as the results of procedures.
65

They may be included in data structures.

Lisp, unlike other common programming languages, awards procedures
full first-class status. This poses challenges for efficient implementation,
but the resulting gain in expressive power is enormous.%°

Exercise 1.40: Define a procedure cubic that can be used together
with the newtons-method procedure in expressions of the form

(newtons-method (cubic a b c) 1)
to approximate zeros of the cubic x> + ax® + bx + c.

Exercise 1.41: Define a procedure double that takes a procedure
of one argument as argument and returns a procedure that applies
the original procedure twice. For example, if inc is a procedure
that adds 1 to its argument, then (double inc) should be a proce-
dure that adds 2. What value is returned by

(((double (double double)) inc) 5)

Exercise 1.42: Let f and g be two one-argument functions. The
composition | after g is defined to be the function x — f(g(x)).
Define a procedure compose that implements composition. For ex-
ample, if inc is a procedure that adds 1 to its argument,
((compose square inc) 6)
49
Exercise 1.43: If f is a numerical function and 7 is a positive in-
teger, then we can form the n'® repeated application of f, which
is defined to be the function whose value at x is f(f(...(f(x))...)).

65 We'll see examples of this after we introduce data structures in Chapter 2.

66 The major implementation cost of first-class procedures is that allowing proce-
dures to be returned as values requires reserving storage for a procedure’s free vari-
ables even while the procedure is not executing. In the Scheme implementation we
will study in Section 4.1, these variables are stored in the procedure’s environment.



For example, if f is the function x — x + 1, then the n'" repeated
application of f is the function x — x + n. If f is the operation
of squaring a number, then the n™ repeated application of f is
the function that raises its argument to the 2”-th power. Write a
procedure that takes as inputs a procedure that computes f and
a positive integer n and returns the procedure that computes the
n'™ repeated application of f. Your procedure should be able to be
used as follows:

((repeated square 2) 5)
625

Hint: You may find it convenient to use compose from Exercise 1.42.

Exercise 1.44: The idea of smoothing a function is an important
concept in signal processing. If f is a function and dx is some small
number, then the smoothed version of f is the function whose
value at a point x is the average of f(x — dx), f(x), and f(x + dx).
Write a procedure smooth that takes as input a procedure that com-
putes f and returns a procedure that computes the smoothed f.
It is sometimes valuable to repeatedly smooth a function (that is,
smooth the smoothed function, and so on) to obtain the n-fold
smoothed function. Show how to generate the n-fold smoothed
function of any given function using smooth and repeated from
Exercise 1.43.

Exercise 1.45: We saw in Section 1.3.3 that attempting to compute
square roots by naively finding a fixed point of y — x/y does not
converge, and that this can be fixed by average damping. The same
method works for finding cube roots as fixed points of the average-
damped y — x/y°. Unfortunately, the process does not work for
fourth roots—a single average damp is not enough to make a fixed-
point search for y — x/y> converge. On the other hand, if we aver-
age damp twice (i.e., use the average damp of the average damp of
y — x/y°) the fixed-point search does converge. Do some experi-
ments to determine how many average damps are required to com-
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pute n" roots as a fixed-point search based upon repeated average
damping of y — x/y""!. Use this to implement a simple procedure
for computing n™ roots using fixed-point, average-damp, and
the repeated procedure of Exercise 1.43. Assume that any arith-
metic operations you need are available as primitives.

Exercise 1.46: Several of the numerical methods described in
this chapter are instances of an extremely general computational
strategy known as ifterative improvement. lIterative improvement
says that, to compute something, we start with an initial guess
for the answer, test if the guess is good enough, and otherwise
improve the guess and continue the process using the improved
guess as the new guess. Write a procedure iterative-improve
that takes two procedures as arguments: a method for telling
whether a guess is good enough and a method for improving a
guess. Iterative-improve should return as its value a procedure
that takes a guess as argument and keeps improving the guess
until it is good enough. Rewrite the sqrt procedure of Section
1.1.7 and the fixed-point procedure of Section 1.3.3 in terms of
iterative-improve.

117
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2 Building Abstractions with Data

We now come to the decisive step of mathematical abstraction: we
forget about what the symbols stand for. .. .[The mathematician]
need not be idle; there are many operations which he may carry
out with these symbols, without ever having to look at the things
they stand for.

—Hermann Weyl, The Mathematical Way of Thinking

We concentrated in Chapter 1 on computational processes and on the role
of procedures in program design. We saw how to use primitive data (num-
bers) and primitive operations (arithmetic operations), how to combine
procedures to form compound procedures through composition, condi-
tionals, and the use of parameters, and how to abstract procedures by using
define. We saw that a procedure can be regarded as a pattern for the local
evolution of a process, and we classified, reasoned about, and performed
simple algorithmic analyses of some common patterns for processes as
embodied in procedures. We also saw that higher-order procedures en-
hance the power of our language by enabling us to manipulate, and thereby
to reason in terms of, general methods of computation. This is much of the
essence of programming.

In this chapter we are going to look at more complex data. All the proce-
dures in chapter 1 operate on simple numerical data, and simple data are
not sufficient for many of the problems we wish to address using computa-
tion. Programs are typically designed to model complex phenomena, and
more often than not one must construct computational objects that have
several parts in order to model real-world phenomena that have several as-
pects. Thus, whereas our focus in chapter 1 was on building abstractions
by combining procedures to form compound procedures, we turn in this
chapter to another key aspect of any programming language: the means it
provides for building abstractions by combining data objects to form com-
pound data.
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Why do we want compound data in a programming language? For the
same reasons that we want compound procedures: to elevate the concep-
tual level at which we can design our programs, to increase the modularity
of our designs, and to enhance the expressive power of our language. Just
as the ability to define procedures enables us to deal with processes at a
higher conceptual level than that of the primitive operations of the lan-
guage, the ability to construct compound data objects enables us to deal
with data at a higher conceptual level than that of the primitive data ob-
jects of the language.

Consider the task of designing a system to perform arithmetic with ratio-
nal numbers. We could imagine an operation add- rat that takes two ra-
tional numbers and produces their sum. In terms of simple data, a rational
number can be thought of as two integers: a numerator and a denominator.
Thus, we could design a program in which each rational number would be
represented by two integers (a numerator and a denominator) and where
add- rat would be implemented by two procedures (one producing the nu-
merator of the sum and one producing the denominator). But this would
be awkward, because we would then need to explicitly keep track of which
numerators corresponded to which denominators. In a system intended
to perform many operations on many rational numbers, such bookkeep-
ing details would clutter the programs substantially, to say nothing of what
they would do to our minds. It would be much better if we could “glue to-
gether” a numerator and denominator to form a pair—a compound data
object—that our programs could manipulate in a way that would be con-
sistent with regarding a rational number as a single conceptual unit.

The use of compound data also enables us to increase the modularity of
our programs. If we can manipulate rational numbers directly as objects
in their own right, then we can separate the part of our program that deals
with rational numbers per se from the details of how rational numbers may
be represented as pairs of integers. The general technique of isolating the
parts of a program that deal with how data objects are represented from the
parts of a program that deal with how data objects are used is a powerful
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design methodology called data abstraction. We will see how data abstrac-
tion makes programs much easier to design, maintain, and modify.

The use of compound data leads to a real increase in the expressive
power of our programming language. Consider the idea of forming a
“linear combination” ax + by. We might like to write a procedure that
would accept a, b, x, and y as arguments and return the value of ax + by.
This presents no difficulty if the arguments are to be numbers, because we
can readily define the procedure

(define (linear-combination a b x y)
(+ (x a x) (xby)))

But suppose we are not concerned only with numbers. Suppose
we would like to express, in procedural terms, the idea that one can
form linear combinations whenever addition and multiplication are
defined—for rational numbers, complex numbers, polynomials, or
whatever. We could express this as a procedure of the form

(define (linear-combination a b x vy)
(add (mul a x) (mul b y)))

where add and mul are not the primitive procedures + and * but rather more
complex things that will perform the appropriate operations for whatever
kinds of data we pass in as the arguments a, b, x, and y. The key point is that
the only thing linear-combination should need to know about a, b, x, and
y is that the procedures add and mul will perform the appropriate manipu-
lations. From the perspective of the procedure linear-combination, it is
irrelevant what a, b, x, and y are and even more irrelevant how they might
happen to be represented in terms of more primitive data. This same ex-
ample shows why it is important that our programming language provide
the ability to manipulate compound objects directly: Without this, there is
no way for a procedure such as linear-combination to pass its arguments
along to add and mul without having to know their detailed structure.!

1 The ability to directly manipulate procedures provides an analogous increase in
the expressive power of a programming language. For example, in Section 1.3.1 we
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We begin this chapter by implementing the rational-number arithmetic
systemm mentioned above. This will form the background for our discus-
sion of compound data and data abstraction. As with compound proce-
dures, the main issue to be addressed is that of abstraction as a technique
for coping with complexity, and we will see how data abstraction enables us
to erect suitable abstraction barriers between different parts of a program.

We will see that the key to forming compound data is that a program-
ming language should provide some kind of “glue” so that data objects can
be combined to form more complex data objects. There are many possible
kinds of glue. Indeed, we will discover how to form compound data using
no special “data” operations at all, only procedures. This will further blur
the distinction between “procedure” and “data,” which was already becom-
ing tenuous toward the end of chapter 1. We will also explore some conven-
tional techniques for representing sequences and trees. One key idea in
dealing with compound data is the notion of closure—that the glue we use
for combining data objects should allow us to combine not only primitive
data objects, but compound data objects as well. Another key idea is that
compound data objects can serve as conventional interfaces for combin-
ing program modules in mix-and-match ways. We illustrate some of these
ideas by presenting a simple graphics language that exploits closure.

We will then augment the representational power of our language by in-
troducing symbolic expressions—data whose elementary parts can be arbi-
trary symbols rather than only numbers. We explore various alternatives
for representing sets of objects. We will find that, just as a given numeri-

introduced the sum procedure, which takes a procedure term as an argument and
computes the sum of the values of term over some specified interval. In order to
define sum, it is crucial that we be able to speak of a procedure such as term as an
entity in its own right, without regard for how term might be expressed with more
primitive operations. Indeed, if we did not have the notion of “a procedure,” it is
doubtful that we would ever even think of the possibility of defining an operation
such as sum. Moreover, insofar as performing the summation is concerned, the de-
tails of how term may be constructed from more primitive operations are irrelevant.
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cal function can be computed by many different computational processes,
there are many ways in which a given data structure can be represented in
terms of simpler objects, and the choice of representation can have signif-
icant impact on the time and space requirements of processes that manip-
ulate the data. We will investigate these ideas in the context of symbolic
differentiation, the representation of sets, and the encoding of informa-
tion.

Next we will take up the problem of working with data that may be rep-
resented differently by different parts of a program. This leads to the need
to implement generic operations, which must handle many different types
of data. Maintaining modularity in the presence of generic operations re-
quires more powerful abstraction barriers than can be erected with simple
data abstraction alone. In particular, we introduce data-directed program-
ming as a technique that allows individual data representations to be de-
signed in isolation and then combined additively (i.e., without modifica-
tion). To illustrate the power of this approach to system design, we close
the chapter by applying what we have learned to the implementation of a
package for performing symbolic arithmetic on polynomials, in which the
coefficients of the polynomials can be integers, rational numbers, complex
numbers, and even other polynomials.

2.1 Introduction to Data Abstraction

In Section 1.1.8, we noted that a procedure used as an element in creating
a more complex procedure could be regarded not only as a collection of
particular operations but also as a procedural abstraction. That is, the de-
tails of how the procedure was implemented could be suppressed, and the
particular procedure itself could be replaced by any other procedure with
the same overall behavior. In other words, we could make an abstraction
that would separate the way the procedure would be used from the details
of how the procedure would be implemented in terms of more primitive
procedures. The analogous notion for compound data is called data ab-
straction. Data abstraction is a methodology that enables us to isolate how
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a compound data object is used from the details of how it is constructed
from more primitive data objects.

The basic idea of data abstraction is to structure the programs that are to
use compound data objects so that they operate on “abstract data.” That
is, our programs should use data in such a way as to make no assump-
tions about the data that are not strictly necessary for performing the task
at hand. At the same time, a “concrete” data representation is defined in-
dependent of the programs that use the data. The interface between these
two parts of our system will be a set of procedures, called selectors and con-
structors, that implement the abstract data in terms of the concrete repre-
sentation. To illustrate this technique, we will consider how to design a set
of procedures for manipulating rational numbers.

2.1.1 Example: Arithmetic Operations for Rational
Numbers

Suppose we want to do arithmetic with rational numbers. We want to be

able to add, subtract, multiply, and divide them and to test whether two

rational numbers are equal.

Let us begin by assuming that we already have a way of constructing a
rational number from a numerator and a denominator. We also assume
that, given a rational number, we have a way of extracting (or selecting) its
numerator and its denominator. Let us further assume that the constructor
and selectors are available as procedures:

e (make-rat (n) (d)) returns the rational number whose numerator is
the integer (n) and whose denominator is the integer (d).

e (numer {(x)) returns the numerator of the rational number {x).
e (denom (x)) returns the denominator of the rational number (x).
We are using here a powerful strategy of synthesis: wishful thinking. We
haven't yet said how a rational number is represented, or how the proce-

dures numer, denom, and make- rat should be implemented. Even so, if we
did have these three procedures, we could then add, subtract, multiply, di-
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We can express these rules as procedures:
(define (add-rat x y)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(¥ (denom x) (denom y))))

(define (sub-rat x y)
(make-rat (- (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))

(define (mul-rat x vy)
(make-rat (* (numer x) (numer y))
(¥ (denom x) (denom y))))

(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))

(define (equal-rat? x vy)
(= (x (numer x) (denom y))
(* (numer y) (denom x))))
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Now we have the operations on rational numbers defined in terms of the
selector and constructor procedures numer, denom, and make- rat. But we
haven't yet defined these. What we need is some way to glue together a
numerator and a denominator to form a rational number.

Pairs

To enable us to implement the concrete level of our data abstraction, our
language provides a compound structure called a pair, which can be con-
structed with the primitive procedure cons. This procedure takes two ar-
guments and returns a compound data object that contains the two argu-
ments as parts. Given a pair, we can extract the parts using the primitive
procedures car and cd r.2 Thus, we can use cons, car, and cdr as follows:

(define x (cons 1 2))

(car x)
1

(cdr x)
2

Notice that a pair is a data object that can be given a name and manipu-
lated, just like a primitive data object. Moreover, cons can be used to form
pairs whose elements are pairs, and so on:

(define x (cons 1 2))
(define y (cons 3 4))

(define z (cons x y))

2 The name cons stands for “construct.” The names car and cdr derive from the
original implementation of Lisp on the IBM 704. That machine had an address-
ing scheme that allowed one to reference the “address” and “decrement” parts of
a memory location. Car stands for “Contents of Address part of Register” and cdr
(pronounced “could-er”) stands for “Contents of Decrement part of Register.”
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(car (car z))
1

(car (cdr z))
3

In Section 2.2 we will see how this ability to combine pairs means that
pairs can be used as general-purpose building blocks to create all sorts of
complex data structures. The single compound-data primitive pair, im-
plemented by the procedures cons, car, and cdr, is the only glue we need.
Data objects constructed from pairs are called list-structured data.

Representing rational numbers

Pairs offer a natural way to complete the rational-number system. Simply
represent a rational number as a pair of two integers: a numerator and a
denominator. Then make-rat, numer, and denom are readily implemented
as follows:>

(define (make-rat n d) (cons n d))
(define (numer x) (car x))

3 Another way to define the selectors and constructor is

(define make-rat cons)
(define numer car)
(define denom cdr)

The first definition associates the name make- rat with the value of the expression
cons, which is the primitive procedure that constructs pairs. Thus make-rat and
cons are names for the same primitive constructor.

Defining selectors and constructors in this way is efficient: Instead of make-rat
calling cons, make-rat is cons, so there is only one procedure called, not two,
when make-rat is called. On the other hand, doing this defeats debugging aids
that trace procedure calls or put breakpoints on procedure calls: You may want to
watch make- rat being called, but you certainly don’'t want to watch every call to
cons.

We have chosen not to use this style of definition in this book.
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(define (denom x) (cdr x))
Also, in order to display the results of our computations, we can print ra-
tional numbers by printing the numerator, a slash, and the denominator:*
(define (print-rat x)
(newline)
(display (numer x))
(display "/")
(display (denom x)))
Now we can try our rational-number procedures:
(define one-half (make-rat 1 2))

(print-rat one-half)
1/2

(define one-third (make-rat 1 3))

(print-rat (add-rat one-half one-third))
5/6

(print-rat (mul-rat one-half one-third))
1/6

(print-rat (add-rat one-third one-third))
6/9
As the final example shows, our rational-number implementation does
not reduce rational numbers to lowest terms. We can remedy this by
changing make-rat. If we have a gcd procedure like the one in Section
1.2.5 that produces the greatest common divisor of two integers, we can

4 Display is the Scheme primitive for printing data. The Scheme primitive newline
starts a new line for printing. Neither of these procedures returns a useful value, so
in the uses of print-rat below, we show only what print- rat prints, not what the
interpreter prints as the value returned by print-rat.
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use gcd to reduce the numerator and the denominator to lowest terms
before constructing the pair:

(define (make-rat n d
(Llet ((g (gcd n d))
(cons (/ ng) (/

Now we have

)
)
dg))))

(print-rat (add-rat one-third one-third))

2/3
as desired. This modification was accomplished by changing the construc-
tor make - rat without changing any of the procedures (such as add- rat and
mul-rat) that implement the actual operations.

Exercise 2.1: Define a better version of make - rat that handles both
positive and negative arguments. Make-rat should normalize the
sign so that if the rational number is positive, both the numerator
and denominator are positive, and if the rational number is nega-
tive, only the numerator is negative.

2.1.2 Abstraction Barriers

Before continuing with more examples of compound data and data ab-
straction, let us consider some of the issues raised by the rational-number
example. We defined the rational-number operations in terms of a con-
structor make- rat and selectors numer and denom. In general, the underly-
ing idea of data abstraction is to identify for each type of data object a basic
set of operations in terms of which all manipulations of data objects of that
type will be expressed, and then to use only those operations in manipu-
lating the data.

We can envision the structure of the rational-number system as shown in
Figure 2.1. The horizontal lines represent abstraction barriers that isolate
different “levels” of the system. At each level, the barrier separates the pro-
grams (above) that use the data abstraction from the programs (below) that
implement the data abstraction. Programs that use rational numbers ma-
nipulate them solely in terms of the procedures supplied “for public use” by
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the rational-number package: add-rat, sub-rat, mul-rat, div-rat, and
equal-rat?. These, in turn, are implemented solely in terms of the con-
structor and selectors make- rat, numer, and denom, which themselves are
implemented in terms of pairs. The details of how pairs are implemented
are irrelevant to the rest of the rational-number package so long as pairs
can be manipulated by the use of cons, car, and cdr. In effect, procedures
at each level are the interfaces that define the abstraction barriers and con-
nect the different levels.

4[ Programs that use rational numbers }—

Rational numbers in problem domain

{ add-rat sub-rat ... }

Rational numbers as numerators and denominators

{ make-rat numer denom }

Rational numbers as pairs

{ cons car «cdr }

However pairs are implemented

Fig 2.1: Data-abstraction barriers in the rational-number package.

This simple idea has many advantages. One advantage is that it makes
programs much easier to maintain and to modify. Any complex data struc-
ture can be represented in a variety of ways with the primitive data struc-
tures provided by a programming language. Of course, the choice of rep-
resentation influences the programs that operate on it; thus, if the repre-
sentation were to be changed at some later time, all such programs might
have to be modified accordingly. This task could be time-consuming and
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expensive in the case of large programs unless the dependence on the rep-
resentation were to be confined by design to a very few program modules.

For example, an alternate way to address the problem of reducing ratio-
nal numbers to lowest terms is to perform the reduction whenever we ac-
cess the parts of a rational number, rather than when we construct it. This
leads to different constructor and selector procedures:

(define (make-rat n d)
(cons n d))

(define (numer x)
(let ((g (gcd (car x) (cdr x))))
(/ (car x) g)))

(define (denom x)
(let ((g (gcd (car x) (cdr x))))

(/ (cdr x) g)))

The difference between this implementation and the previous one lies
in when we compute the gcd. If in our typical use of rational numbers we
access the numerators and denominators of the same rational numbers
many times, it would be preferable to compute the gcd when the rational
numbers are constructed. If not, we may be better off waiting until access
time to compute the gcd. In any case, when we change from one repre-
sentation to the other, the procedures add-rat, sub-rat, and so on do not
have to be modified at all.

Constraining the dependence on the representation to a few interface
procedures helps us design programs as well as modify them, because it
allows us to maintain the flexibility to consider alternate implementations.
To continue with our simple example, suppose we are designing a rational-
number package and we can’t decide initially whether to perform the gcd
at construction time or at selection time. The data-abstraction methodol-
ogy gives us a way to defer that decision without losing the ability to make
progress on the rest of the system.
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Exercise 2.2: Consider the problem of representing line segments
in a plane. Each segment is represented as a pair of points:
a starting point and an ending point. Define a constructor
make-segment and selectors start-segment and end-segment
that define the representation of segments in terms of points.
Furthermore, a point can be represented as a pair of numbers:
the x coordinate and the y coordinate. Accordingly, specify a
constructor make-point and selectors x-point and y-point
that define this representation. Finally, using your selectors and
constructors, define a procedure midpoint-segment that takes
a line segment as argument and returns its midpoint (the point
whose coordinates are the average of the coordinates of the
endpoints). To try your procedures, you'll need a way to print
points:

(define (print-point p)
(newline)
(display " (")
(display (x-point p))
(display ",")
(display (y-point p))
(display ")"))

Exercise 2.3: Implement a representation for rectangles in a plane.
(Hint: You may want to make use of Exercise 2.2.) In terms of
your constructors and selectors, create procedures that compute
the perimeter and the area of a given rectangle. Now implement
a different representation for rectangles. Can you design your sys-
tem with suitable abstraction barriers, so that the same perimeter
and area procedures will work using either representation?

2.1.3 What Is Meant by Data?

We began the rational-number implementation in Section 2.1.1 by imple-
menting the rational-number operations add- rat, sub-rat, and so on in
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terms of three unspecified procedures: make-rat, numer, and denom. At
that point, we could think of the operations as being defined in terms of
data objects—numerators, denominators, and rational numbers—whose
behavior was specified by the latter three procedures.

But exactly what is meant by data? It is not enough to say “whatever is
implemented by the given selectors and constructors.” Clearly, not every
arbitrary set of three procedures can serve as an appropriate basis for the
rational-number implementation. We need to guarantee that, if we con-
struct a rational number x from a pair of integers n and d, then extracting
the numer and the denom of x and dividing them should yield the same re-
sult as dividing n by d. In other words, make-rat, numer, and denom must
satisfy the condition that, for any integer n and any non-zero integer d, if x

is (make-rat n d), then
(numer x)

n
(denom x) d

In fact, this is the only condition make- rat, numer, and denom must fulfill
in order to form a suitable basis for a rational-number representation. In
general, we can think of data as defined by some collection of selectors
and constructors, together with specified conditions that these procedures
must fulfill in order to be a valid representation.’

5 Surprisingly, this idea is very difficult to formulate rigorously. There are two ap-
proaches to giving such a formulation. One, pioneered by C. A. R. Hoare (1972),
is known as the method of abstract models. 1t formalizes the “procedures plus
conditions” specification as outlined in the rational-number example above. Note
that the condition on the rational-number representation was stated in terms of
facts about integers (equality and division). In general, abstract models define new
kinds of data objects in terms of previously defined types of data objects. Asser-
tions about data objects can therefore be checked by reducing them to assertions
about previously defined data objects. Another approach, introduced by Zilles at
MIT, by Goguen, Thatcher, Wagner, and Wright at IBM (see Thatcher et al. 1978),
and by Guttag at Toronto (see Guttag 1977), is called algebraic specification. It re-
gards the “procedures” as elements of an abstract algebraic system whose behavior
is specified by axioms that correspond to our “conditions,” and uses the techniques
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This point of view can serve to define not only “high-level” data objects,
such as rational numbers, but lower-level objects as well. Consider the no-
tion of a pair, which we used in order to define our rational numbers. We
never actually said what a pair was, only that the language supplied proce-
dures cons, car, and cdr for operating on pairs. But the only thing we need
to know about these three operations is that if we glue two objects together
using cons we can retrieve the objects using car and cdr. That is, the oper-
ations satisfy the condition that, for any objects x and y, if zis (cons x y)
then (car z)isxand (cdr z) isy. Indeed, we mentioned that these three
procedures are included as primitives in our language. However, any triple
of procedures that satisfies the above condition can be used as the basis for
implementing pairs. This point is illustrated strikingly by the fact that we
could implement cons, car, and cdr without using any data structures at
all but only using procedures. Here are the definitions:

(define (cons x y)
(define (dispatch m)

(cond ((=m 0) x)
((=m1)vy)
(else (error "Argument not @ or 1 - CONS" m))))
dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

This use of procedures corresponds to nothing like our intuitive notion
of what data should be. Nevertheless, all we need to do to show that this is
a valid way to represent pairs is to verify that these procedures satisfy the
condition given above.

The subtle point to notice is that the value returned by (cons x y) is
a procedure—namely the internally defined procedure dispatch, which

of abstract algebra to check assertions about data objects. Both methods are sur-
veyed in the paper by Liskov and Zilles (1975).
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takes one argument and returns either x or y depending on whether the
argument is 0 or 1. Correspondingly, (car z) is defined to apply z to 0.
Hence, if z is the procedure formed by (cons x y), then z applied to 0 will
yield x. Thus, we have shown that (car (cons x y)) yields x, as desired.
Similarly, (cdr (cons x y)) applies the procedure returned by (cons x
y) to 1, which returns y. Therefore, this procedural implementation of
pairs is a valid implementation, and if we access pairs using only cons,
car, and cdr we cannot distinguish this implementation from one that uses
“real” data structures.

The point of exhibiting the procedural representation of pairs is not that
our language works this way (Scheme, and Lisp systems in general, imple-
ment pairs directly, for efficiency reasons) but that it could work this way.
The procedural representation, although obscure, is a perfectly adequate
way to represent pairs, since it fulfills the only conditions that pairs need
to fulfill. This example also demonstrates that the ability to manipulate
procedures as objects automatically provides the ability to represent com-
pound data. This may seem a curiosity now, but procedural representa-
tions of data will play a central role in our programming repertoire. This
style of programming is often called message passing, and we will be using
it as a basic tool in Chapter 3 when we address the issues of modeling and
simulation.

Exercise 2.4: Here is an alternative procedural representation of
pairs. For this representation, verify that (car (cons x y)) yields
x for any objects x and y.

(define (cons x y)
(lambda (m) (m x y)))

(define (car z)
(z (lambda (p q) p)))

What is the corresponding definition of cdr? (Hint: To verify that
this works, make use of the substitution model of Section 1.1.5.)
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Exercise 2.5: Show that we can represent pairs of nonnegative inte-
gers using only numbers and arithmetic operations if we represent
the pair a and b as the integer that is the product 243?. Give the
corresponding definitions of the procedures cons, car, and cdr.

Exercise 2.6: In case representing pairs as procedures wasn’'t mind-
boggling enough, consider that, in a language that can manipu-
late procedures, we can get by without numbers (at least insofar as
nonnegative integers are concerned) by implementing 0 and the
operation of adding 1 as

(define zero (lambda (f) (lambda (x) x)))

(define (add-1 n)
(Lambda (f) (lambda (x) (f ((n f) x)))))

This representation is known as Church numerals, after its inven-
tor, Alonzo Church, the logician who invented the A-calculus.

Define one and two directly (not in terms of zero and add-1). (Hint:
Use substitution to evaluate (add-1 zero)). Give a direct defini-
tion of the addition procedure + (not in terms of repeated applica-
tion of add-1).

2.1.4 Extended Exercise: Interval Arithmetic

Alyssa P. Hacker is designing a system to help people solve engineering
problems. One feature she wants to provide in her system is the ability to
manipulate inexact quantities (such as measured parameters of physical
devices) with known precision, so that when computations are done with
such approximate quantities the results will be numbers of known preci-
sion.

Electrical engineers will be using Alyssa’s system to compute electrical
quantities. It is sometimes necessary for them to compute the value of a
parallel equivalent resistance R, of two resistors Ry and R using the for-
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mula
1

fp = 1/R1+1/R,

Resistance values are usually known only up to some tolerance guaranteed
by the manufacturer of the resistor. For example, if you buy a resistor la-
beled “6.8 ohms with 10% tolerance” you can only be sure that the resistor
has a resistance between 6.8 — 0.68 = 6.12 and 6.8 + 0.68 = 7.48 ohms.
Thus, if you have a 6.8-ohm 10% resistor in parallel with a 4.7-ohm 5% re-
sistor, the resistance of the combination can range from about 2.58 ohms
(if the two resistors are at the lower bounds) to about 2.97 ohms (if the two
resistors are at the upper bounds).

Alyssa’s idea is to implement “interval arithmetic” as a set of arithmetic
operations for combining “intervals” (objects that represent the range of
possible values of an inexact quantity). The result of adding, subtracting,
multiplying, or dividing two intervals is itself an interval, representing the
range of the result.

Alyssa postulates the existence of an abstract object called an “interval”
that has two endpoints: a lower bound and an upper bound. She also pre-
sumes that, given the endpoints of an interval, she can construct the in-
terval using the data constructor make-interval. Alyssa first writes a pro-
cedure for adding two intervals. She reasons that the minimum value the
sum could be is the sum of the two lower bounds and the maximum value
it could be is the sum of the two upper bounds:

(define (add-interval x vy)
(make-interval (+ (lower-bound x) (lower-bound y))
(+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding the mini-
mum and the maximum of the products of the bounds and using them as
the bounds of the resulting interval. (Min and max are primitives that find
the minimum or maximum of any number of arguments.)

(define (mul-interval x vy)
(let ((pl (* (lower-bound x) (lower-bound y)))
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(p2 (* (lower-bound x) (upper-bound y)))
(p3 (* (upper-bound x) (lower-bound y)))
(p4 (* (upper-bound x) (upper-bound y))))
(make-interval (min pl p2 p3 p4)
(max pl p2 p3 p4))))
To divide two intervals, Alyssa multiplies the first by the reciprocal of the
second. Note that the bounds of the reciprocal interval are the reciprocal
of the upper bound and the reciprocal of the lower bound, in that order.

(define (div-interval x vy)
(mul-interval x
(make-interval (/ 1.0 (upper-bound y))
(/ 1.0 (lower-bound y)))))

Exercise 2.7: Alyssa’s program is incomplete because she has not
specified the implementation of the interval abstraction. Here is a
definition of the interval constructor:

(define (make-interval a b) (cons a b))

Define selectors upper-bound and lower-bound to complete the
implementation.

Exercise 2.8: Using reasoning analogous to Alyssa’s, describe how
the difference of two intervals may be computed. Define a corre-
sponding subtraction procedure, called sub-interval.

Exercise 2.9: The width of an interval is half of the difference
between its upper and lower bounds. The width is a measure of
the uncertainty of the number specified by the interval. For some
arithmetic operations the width of the result of combining two
intervals is a function only of the widths of the argument intervals,
whereas for others the width of the combination is not a function
of the widths of the argument intervals. Show that the width of
the sum (or difference) of two intervals is a function only of the
widths of the intervals being added (or subtracted). Give examples
to show that this is not true for multiplication or division.



Exercise 2.10: Ben Bitdiddle, an expert systems programmer, looks
over Alyssa’s shoulder and comments that it is not clear what it
means to divide by an interval that spans zero. Modify Alyssa’s code
to check for this condition and to signal an error if it occurs.

Exercise 2.11: In passing, Ben also cryptically comments: “By test-
ing the signs of the endpoints of the intervals, it is possible to break
mul-interval into nine cases, only one of which requires more
than two multiplications.” Rewrite this procedure using Ben'’s sug-
gestion.

After debugging her program, Alyssa shows it to a potential user,
who complains that her program solves the wrong problem. He
wants a program that can deal with numbers represented as a cen-
ter value and an additive tolerance; for example, he wants to work
with intervals such as 3.5 + 0.15 rather than [3.35, 3.65]. Alyssa re-
turns to her desk and fixes this problem by supplying an alternate
constructor and alternate selectors:

(define (make-center-width c w)
(make-interval (- c w) (+ c w)))

(define (center 1)
(/ (+ (lower-bound i) (upper-bound 1i)) 2))

(define (width i)

(/ (- (upper-bound i) (lower-bound i)) 2))
Unfortunately, most of Alyssa’s users are engineers. Real engineer-
ing situations usually involve measurements with only a small un-
certainty, measured as the ratio of the width of the interval to the
midpoint of the interval. Engineers usually specify percentage tol-
erances on the parameters of devices, as in the resistor specifica-
tions given earlier.

Exercise 2.12: Define a constructor make-center-percent that
takes a center and a percentage tolerance and produces the

138
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desired interval. You must also define a selector percent that
produces the percentage tolerance for a given interval. The center
selector is the same as the one shown above.

Exercise 2.13: Show that under the assumption of small percent-
age tolerances there is a simple formula for the approximate per-
centage tolerance of the product of two intervals in terms of the
tolerances of the factors. You may simplify the problem by assum-
ing that all numbers are positive.

After considerable work, Alyssa P. Hacker delivers her finished sys-
tem. Several years later, after she has forgotten all about it, she gets
a frenzied call from an irate user, Lem E. Tweakit. It seems that Lem
has noticed that the formula for parallel resistors can be written in
two algebraically equivalent ways:

R1R;
Ri+ Ry

and
1

1/Ri1+1/R>
He has written the following two programs, each of which com-
putes the parallel-resistors formula differently:

(define (parl rl r2)
(div-interval (mul-interval rl r2)
(add-interval rl r2)))

(define (par2 rl r2)
(let ((one (make-interval 1 1)))
(div-interval one
(add-interval (div-interval one r1l)
(div-interval one r2)))))
Lem complains that Alyssa’s program gives different answers for

the two ways of computing. This is a serious complaint.

Exercise 2.14: Demonstrate that Lem is right. Investigate the be-
havior of the system on a variety of arithmetic expressions. Make
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some intervals A and B, and use them in computing the expres-
sions A/A and A/B. You will get the most insight by using intervals
whose width is a small percentage of the center value. Examine the
results of the computation in center-percent form (see Ex. 2.12).

Exercise 2.15: Eva Lu Ator, another user, has also noticed the dif-
ferent intervals computed by different but algebraically equivalent
expressions. She says that a formula to compute with intervals us-
ing Alyssa’s system will produce tighter error bounds if it can be
written in such a form that no variable that represents an uncertain
number is repeated. Thus, she says, par2 is a “better” program for
parallel resistances than parl. Is she right? Why?

Exercise 2.16: Explain, in general, why equivalent algebraic
expressions may lead to different answers. Can you devise an
interval-arithmetic package that does not have this shortcoming,
or is this task impossible? (Warning: This problem is very difficult.)

2.2 Hierarchical Data and the Closure Property

As we have seen, pairs provide a primitive “glue” that we can use to con-
struct compound data objects. Figure 2.2 shows a standard way to visualize
a pair—in this case, the pair formed by (cons 1 2). In this representation,
which is called box-and-pointer notation, each object is shown as a pointer
to a box. The box for a primitive object contains a representation of the ob-
ject. For example, the box for a number contains a numeral. The box for a
pair is actually a double box, the left part containing (a pointer to) the car
of the pair and the right part containing the cdr.

We have already seen that cons can be used to combine not only num-
bers but pairs as well. (You made use of this fact, or should have, in doing
Exercise 2.2 and Exercise 2.3.) As a consequence, pairs provide a universal
building block from which we can construct all sorts of data structures. Fig.
2.3 shows two ways to use pairs to combine the numbers 1, 2, 3, and 4.
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Figure 2.2: Box-and-pointer representation of (cons 1 2).
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(cons (cons 1 2) (cons (cons 1

(cons 3 4)) (cons 2 3))
4)

Figure 2.3: Two ways to combine 1, 2, 3, and 4 using pairs.

The ability to create pairs whose elements are pairs is the essence of list
structure’s importance as a representational tool. We refer to this ability
as the closure property of cons. In general, an operation for combining
data objects satisfies the closure property if the results of combining things
with that operation can themselves be combined using the same opera-
tion.® Closure is the key to power in any means of combination because it

6 The use of the word “closure” here comes from abstract algebra, where a set of ele-
ments is said to be closed under an operation if applying the operation to elements
in the set produces an element that is again an element of the set. The Lisp com-
munity also (unfortunately) uses the word “closure” to describe a totally unrelated
concept: A closure is an implementation technique for representing procedures
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permits us to create hierarchical structures—structures made up of parts,
which themselves are made up of parts, and so on.

From the outset of Chapter 1, we've made essential use of closure in deal-
ing with procedures, because all but the very simplest programs rely on the
fact that the elements of a combination can themselves be combinations.
In this section, we take up the consequences of closure for compound data.
We describe some conventional techniques for using pairs to represent se-
quences and trees, and we exhibit a graphics language that illustrates clo-
sure in a vivid way.’

2.2.1 Representing Sequences

One of the useful structures we can build with pairs is a sequence—an or-
dered collection of data objects. There are, of course, many ways to repre-
sent sequences in terms of pairs. One particularly straightforward repre-
sentation is illustrated in Figure 2.4, where the sequence 1, 2, 3, 4 is repre-
sented as a chain of pairs. The car of each pair is the corresponding item
in the chain, and the cdr of the pair is the next pair in the chain. The cdr of
the final pair signals the end of the sequence by pointing to a distinguished

with free variables. We do not use the word “closure” in this second sense in this
book.

7 The notion that a means of combination should satisfy closure is a straightforward
idea. Unfortunately, the data combiners provided in many popular programming
languages do not satisfy closure, or make closure cumbersome to exploit. In Fortran
or Basic, one typically combines data elements by assembling them into arrays—
but one cannot form arrays whose elements are themselves arrays. Pascal and C
admit structures whose elements are structures. However, this requires that the
programmer manipulate pointers explicitly, and adhere to the restriction that each
field of a structure can contain only elements of a prespecified form. Unlike Lisp
with its pairs, these languages have no built-in general-purpose glue that makes
it easy to manipulate compound data in a uniform way. This limitation lies be-
hind Alan Perlis’s comment in his foreword to this book: “In Pascal the plethora of
declarable data structures induces a specialization within functions that inhibits
and penalizes casual cooperation. It is better to have 100 functions operate on one
data structure than to have 10 functions operate on 10 data structures.”
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value that is not a pair, represented in box-and-pointer diagrams as a di-
agonal line and in programs as the value of the variable nil. The entire
sequence is constructed by nested cons operations:

(cons 1
(cons 2
(cons 3
(cons 4 nil))))

TG
o &) ) [«

Figure 2.4: The sequence 1, 2, 3, 4 represented as a chain of pairs.

Such a sequence of pairs, formed by nested conses, is called a list, and
Scheme provides a primitive called 1ist to help in constructing lists.® The
above sequence could be produced by (list 1 2 3 4). In general,

(list (ap (az) ... {an))
is equivalent to
(cons (ayp)
(cons (ap)
(cons
(cons <(a,)
nil)
cee)))

Lisp systems conventionally print lists by printing the sequence of el-
ements, enclosed in parentheses. Thus, the data object in Figure 2.4 is
printed as (1 2 3 4):

(define one-through-four (list 1 2 3 4))

8 In this book, we use list to mean a chain of pairs terminated by the end-of-list
marker. In contrast, the term list structure refers to any data structure made out
of pairs, not just to lists.
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one-through-four
(1 2 3 4)

Be careful not to confuse the expression (list 1 2 3 4) with the list
(1 2 3 4), which is the result obtained when the expression is evaluated.
Attempting to evaluate the expression (1 2 3 4) will signal an error when
the interpreter tries to apply the procedure 1 to arguments 2, 3, and 4.

We can think of car as selecting the first item in the list, and of cdr as
selecting the sublist consisting of all but the first item. Nested applications
of car and cdr can be used to extract the second, third, and subsequent
items in the list.” The constructor cons makes a list like the original one,
but with an additional item at the beginning.

(car one-through-four)
1

(cdr one-through-four)
(2 3 4)

(car (cdr one-through-four))
2

(cons 10 one-through-four)
(10 1 2 3 4)

(cons 5 one-through-four)
(5123 4)

9 Since nested applications of car and cdr are cumbersome to write, Lisp dialects
provide abbreviations for them—for instance,

(cadr (arg)) = (car (cdr (arg)))

The names of all such procedures start with c and end with r. Each a between them
stands for a car operation and each d for a cdr operation, to be applied in the same
order in which they appear in the name. The names car and cdr persist because
simple combinations like cadr are pronounceable.
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The value of nil, used to terminate the chain of pairs, can be thought of
as a sequence of no elements, the empty list. The word nil is a contraction
of the Latin word nihil, which means “nothing.”!°

List operations

The use of pairs to represent sequences of elements as lists is accompa-
nied by conventional programming techniques for manipulating lists by
successively “cdring down” the lists. For example, the procedure list-ref
takes as arguments a list and a number n and returns the n item of the
list. It is customary to number the elements of the list beginning with 0.
The method for computing list-ref is the following:

e For n =0, list-ref should return the car of the list.

e Otherwise, list-ref should return the (n — 1)-st item of the cdr of the
list.
(define (list-ref items n)
(if (= n Q)
(car items)
(list-ref (cdr items) (- n 1))))

(define squares (list 1 4 9 16 25))

(list-ref squares 3)
16

10 1¢’s remarkable how much energy in the standardization of Lisp dialects has been
dissipated in arguments that are literally over nothing: Should nil be an ordinary
name? Should the value of nil be a symbol? Should it be a list? Should it be a
pair? In Scheme, nil is an ordinary name, which we use in this section as a vari-
able whose value is the end-of-list marker (just as true is an ordinary variable that
has a true value). Other dialects of Lisp, including Common Lisp, treat nil as a
special symbol. The authors of this book, who have endured too many language
standardization brawls, would like to avoid the entire issue. Once we have intro-
duced quotation in Section 2.3, we will denote the empty list as ’ () and dispense
with the variable nil entirely.
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Often we cdr down the whole list. To aid in this, Scheme includes a prim-
itive predicate null?, which tests whether its argument is the empty list.
The procedure length, which returns the number of items in a list, illus-
trates this typical pattern of use:

(define (length items)
(if (null? items)
¢)
(+ 1 (length (cdr items)))))

(define odds (list 1 3 5 7))

(length odds)
4

The length procedure implements a simple recursive plan. The reduc-
tion step is:
e The length of any listis 1 plus the length of the cdr of the list.
This is applied successively until we reach the base case:

e The length of the empty list is 0.

We could also compute length in an iterative style:

(define (length items)
(define (length-iter a count)
(if (null? a)
count
(length-iter (cdr a) (+ 1 count))))
(length-iter items 0))

Another conventional programming technique is to “cons up” an answer
list while cdring down a list, as in the procedure append, which takes two
lists as arguments and combines their elements to make a new list:

(append squares odds)
(14916 25135 7)
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(append odds squares)
(1 357149 16 25)

Append is also implemented using a recursive plan. To append lists list1l
and list2, do the following;:

e If Listl is the empty list, then the result is just 1ist2.

e Otherwise, append the cdr of listl and list2, and cons the car of
listl onto the result:

(define (append listl list2)
(if (null? listl)
list2
(cons (car listl) (append (cdr listl) list2))))

Exercise 2.17: Define a procedure last-pair that returns the list
that contains only the last element of a given (nonempty) list:

(last-pair (list 23 72 149 34))
(34)

Exercise 2.18: Define a procedure reverse that takes a list as argu-
ment and returns a list of the same elements in reverse order:

(reverse (list 1 4 9 16 25))
(25 16 9 4 1)

Exercise 2.19: Consider the change-counting program of Section
1.2.2. It would be nice to be able to easily change the currency used
by the program, so that we could compute the number of ways to
change a British pound, for example. As the program is written, the
knowledge of the currency is distributed partly into the procedure
first-denomination and partly into the procedure count-change
(which knows that there are five kinds of U.S. coins). It would be
nicer to be able to supply a list of coins to be used for making
change.

We want to rewrite the procedure cc so that its second argument is
a list of the values of the coins to use rather than an integer specify-
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ing which coins to use. We could then have lists that defined each
kind of currency:

(define us-coins (list 50 25 10 5 1))

(define uk-coins (list 100 50 20 10 5 2 1 0.5))
We could then call cc as follows:

(cc 100 us-coins)
292

To do this will require changing the program cc somewhat. It will
still have the same form, but it will access its second argument dif-
ferently, as follows:

c amount coin-values)
= amount Q) 1)

(define (c
((
((or (< amount 0) (no-more? coin-values)) 0)
(e
(

(cond

—~
D

S
+ (cc amount
(except-first-denomination
coin-values))
(cc (- amount
(first-denomination coin-values))
coin-values)))))

Define the procedures first-denomination, except-first-de-
nomination and no-more? in terms of primitive operations on list
structures. Does the order of the list coin-values affect the answer
produced by cc? Why or why not?

Exercise 2.20: The procedures +, *, and list take arbitrary num-
bers of arguments. One way to define such procedures is to use
define with dotted-tail notation. In a procedure definition, a pa-
rameter list that has a dot before the last parameter name indicates
that, when the procedure is called, the initial parameters (if any)
will have as values the initial arguments, as usual, but the final pa-
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rameter’s value will be a list of any remaining arguments. For in-
stance, given the definition

(define (f x y . z) (body))
the procedure f can be called with two or more arguments. If we
evaluate

(f123450)
then in the body of f, x will be 1, y will be 2, and z will be the list (3
4 5 6). Given the definition

(define (g . w) <(body))
the procedure g can be called with zero or more arguments. If we
evaluate

(gl23456)
then in the body of g, w will be the list (1 2 3 4 5 6).!!
Use this notation to write a procedure same-parity that takes one

or more integers and returns a list of all the arguments that have
the same even-odd parity as the first argument. For example,

(same-parity 1 2 3456 7)
(1 357)

(same-parity 2 3 4 56 7)
(2 4 6)

Mapping over lists

One extremely useful operation is to apply some transformation to each
element in a list and generate the list of results. For instance, the following
procedure scales each number in a list by a given factor:

11 To define f and g using lambda we would write

(define f (lambda (x y . z) (body)))
(define g (lambda w (body)))
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(define (scale-list items factor)
(1f (null? items)
nil
(cons (* (car items) factor)
(scale-list (cdr items) factor))))

(scale-list (list 1 2 3 4 5) 10)
(10 20 30 40 50)

We can abstract this general idea and capture it as a common pattern
expressed as a higher-order procedure, just as in Section 1.3. The higher-
order procedure here is called map. Map takes as arguments a procedure
of one argument and a list, and returns a list of the results produced by
applying the procedure to each element in the list:!?

(define (map proc items)
(if (null? items)
nil
(cons (proc (car items))
(map proc (cdr items)))))

(map abs (list -10 2.5 -11.6 17))
(10 2.5 11.6 17)

12denwsMnmndymbwm%ammunmwmneﬂmﬁsmomgmwmﬂﬂmnﬂwonem%
scribed here. This more general map takes a procedure of n arguments, together
with n lists, and applies the procedure to all the first elements of the lists, all the
second elements of the lists, and so on, returning a list of the results. For example:

(map + (list 1 2 3) (list 40 50 60) (list 700 800 900))
(741 852 963)

(map (lambda (x y) (+ x (* 2 y)))
(list 1 2 3)
(list 4 5 6))

(9 12 15)
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(map (lambda (x) (*x X X))
(list 1 2 3 4))
(1 49 16)

Now we can give a new definition of scale-1ist in terms of map:

(define (scale-list items factor)
(map (lambda (x) (*x x factor))
items))

Map is an important construct, not only because it captures a common
pattern, but because it establishes a higher level of abstraction in dealing
with lists. In the original definition of scale-1list, the recursive structure
of the program draws attention to the element-by-element processing of
the list. Defining scale-list in terms of map suppresses that level of detail
and emphasizes that scaling transforms a list of elements to a list of results.
The difference between the two definitions is not that the computer is per-
forming a different process (it isn’'t) but that we think about the process
differently. In effect, map helps establish an abstraction barrier that isolates
the implementation of procedures that transform lists from the details of
how the elements of the list are extracted and combined. Like the barri-
ers shown in Figure 2.1, this abstraction gives us the flexibility to change
the low-level details of how sequences are implemented, while preserving
the conceptual framework of operations that transform sequences to se-
quences. Section 2.2.3 expands on this use of sequences as a framework
for organizing programs.

Exercise 2.21: The procedure square-1ist takes a list of numbers
as argument and returns a list of the squares of those numbers.

(square-list (list 1 2 3 4))
(1 4 9 16)

Here are two different definitions of square-1ist. Complete both
of them by filling in the missing expressions:
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(define (square-list items)
(1f (null? items)
nil

(cons (??) (?7))))

(define (square-list items)
(map (??7) (??7)))

Exercise 2.22: Louis Reasoner tries to rewrite the first square-list
procedure of Exercise 2.21 so that it evolves an iterative process:

(define (square-list items)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(cons (square (car things))
answer))))
(iter items nil))

Unfortunately, defining square-1ist this way produces the an-
swer list in the reverse order of the one desired. Why?

Louis then tries to fix his bug by interchanging the arguments to
cons:

(define (square-list items)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(cons answer

(square (car things))))))
(iter items nil))

This doesn’t work either. Explain.
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Exercise 2.23: The procedure for-each is similar to map. It takes
as arguments a procedure and a list of elements. However, rather
than forming a list of the results, for-each just applies the proce-
dure to each of the elements in turn, from left to right. The values
returned by applying the procedure to the elements are not used
at all—for-each is used with procedures that perform an action,
such as printing. For example,

(for-each (lambda (x) (newline) (display x))
(list 57 321 88))

57

321

88

The value returned by the call to for-each (not illustrated above)
can be something arbitrary, such as true. Give an implementation
of for-each.

2.2.2 Hierarchical Structures

The representation of sequences in terms of lists generalizes naturally to
represent sequences whose elements may themselves be sequences. For
example, we can regard the object ((1 2) 3 4) constructed by

(cons (list 1 2) (list 3 4))

as a list of three items, the first of which is itself a list, (1 2). Indeed, this
is suggested by the form in which the result is printed by the interpreter.
Figure 2.5 shows the representation of this structure in terms of pairs.

Another way to think of sequences whose elements are sequences is as
trees. The elements of the sequence are the branches of the tree, and el-
ements that are themselves sequences are subtrees. Figure 2.6 shows the
structure in Figure 2.5 viewed as a tree.
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Figure 2.5: Structure formed by (cons (list 1 2) (list 3 4)).

((12) 3 4)
(1 2)

3 4
1 2

Figure 2.6: The list structure in Figure 2.5 viewed as a tree.

Recursion is a natural tool for dealing with tree structures, since we can
often reduce operations on trees to operations on their branches, which re-
duce in turn to operations on the branches of the branches, and so on, until
we reach the leaves of the tree. As an example, compare the length proce-
dure of Section 2.2.1 with the count-leaves procedure, which returns the
total number of leaves of a tree:

(define x (cons (list 1 2) (list 3 4)))

(length x)
3
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(count-leaves x)
4

(list x x)
(((12) 34) ((12) 34))

(length (list x x))
2

(count-leaves (list x x))
8

To implement count-leaves, recall the recursive plan for computing
length:

e Length ofalist x is 1 plus length of the cdr of x.
e Length of the empty list is 0.

Count-leaves is similar. The value for the empty list is the same:
e Count-leaves of the empty list is 0.
But in the reduction step, where we strip off the car of the list, we must

take into account that the car may itself be a tree whose leaves we need to
count. Thus, the appropriate reduction step is

e Count-leaves of a tree x is count-leaves of the car of x plus
count-leaves of the cdr of x.
Finally, by taking cars we reach actual leaves, so we need another base
case:
e Count-leaves ofaleafis 1.
To aid in writing recursive procedures on trees, Scheme provides the

primitive predicate pair?, which tests whether its argument is a pair. Here
is the complete procedure:!3

13 The order of the first two clauses in the cond matters, since the empty list satisfies
null? and also is not a pair.



(define (count-leaves Xx)

(cond ((n

(not (palr? x)) 1)

else (+ (count-leaves (car x))

(count-leaves (cdr x))))))

(
(
(
(

Exercise 2.24: Suppose we evaluate the expression (list 1 (list
2 (list 3 4))). Give the result printed by the interpreter, the
corresponding box-and-pointer structure, and the interpretation
of this as a tree (as in Figure 2.6).

Exercise 2.25: Give combinations of cars and cdrs that will pick 7
from each of the following lists:

(1 3 (57)9)
((7))

(1 (2 (3 (4 (5(67))))))
Exercise 2.26: Suppose we define x and y to be two lists:
(define x (list 1 2 3))

(define y (list 4 5 6))

What result is printed by the interpreter in response to evaluating
each of the following expressions:

(append x y)
(cons x vy)

(list x vy)

Exercise 2.27: Modify your reverse procedure of Exercise 2.18 to
produce a deep-reverse procedure that takes a list as argument
and returns as its value the list with its elements reversed and with
all sublists deep-reversed as well. For example,
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(define x (list (list 1 2) (list 3 4)))

X

((12) (34))

(reverse x)

((34) (12))

(deep-reverse x)

((4 3) (21))

Exercise 2.28: Write a procedure fringe that takes as argument a
tree (represented as a list) and returns a list whose elements are all
the leaves of the tree arranged in left-to-right order. For example,

(define x (list (list 1 2) (list 3 4)))

(fringe x)
(1 2 3 4)

(fringe (list x x))
(123412 34)

Exercise 2.29: A binary mobile consists of two branches, a left
branch and a right branch. Each branch is a rod of a certain
length, from which hangs either a weight or another binary
mobile. We can represent a binary mobile using compound data
by constructing it from two branches (for example, using list):

(define (make-mobile left right)
(list left right))

A branch is constructed from a length (which must be a number)
together with a structure, which may be either a number (repre-
senting a simple weight) or another mobile:

(define (make-branch length structure)
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(list length structure))

a. Write the corresponding selectors left-branch and right-
branch, which return the branches of a mobile, and branch-
length and branch-structure, which return the components
of a branch.

b. Using your selectors, define a procedure total-weight that re-
turns the total weight of a mobile.

c. A mobile is said to be balanced if the torque applied by its top-
left branch is equal to that applied by its top-right branch (that
is, if the length of the left rod multiplied by the weight hanging
from that rod is equal to the corresponding product for the right
side) and if each of the submobiles hanging off its branches is
balanced. Design a predicate that tests whether a binary mobile
is balanced.

d. Suppose we change the representation of mobiles so that the
constructors are

(define (make-mobile left right)
(cons left right))

(define (make-branch length structure)
(cons length structure))

How much do you need to change your programs to convert to
the new representation?

Mapping over trees

Just as map is a powerful abstraction for dealing with sequences, map to-
gether with recursion is a powerful abstraction for dealing with trees. For
instance, the scale-tree procedure, analogous to scale-1list of Section
2.2.1, takes as arguments a numeric factor and a tree whose leaves are
numbers. It returns a tree of the same shape, where each number is multi-
plied by the factor. The recursive plan for scale-tree is similar to the one
for count-leaves:
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(define (scale-tree tree factor)
(cond ((null? tree) nil)
((not (pair? tree)) (x tree factor))
(else (cons (scale-tree (car tree) factor)

(scale-tree (cdr tree) factor)))))

(scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7))
10)
(10 (20 (30 40) 50) (60 70))

Another way to implement scale- tree is to regard the tree as a sequence
of sub-trees and use map. We map over the sequence, scaling each sub-tree
in turn, and return the list of results. In the base case, where the tree is a
leaf, we simply multiply by the factor:

(define (scale-tree tree factor)
(map (lambda (sub-tree)
(1f (pair? sub-tree)
(scale-tree sub-tree factor)
(¥ sub-tree factor)))
tree))

Many tree operations can be implemented by similar combinations of
sequence operations and recursion.

Exercise 2.30: Define a procedure square-tree analogous to the
square-list procedure of Exercise 2.21. That is, square-tree
should behave as follows:

(square-tree
(list 1
(list 2 (list 3 4) 5)
(list 6 7)))
(1 (4 (9 16) 25) (36 49))

Define square-tree both directly (i.e., without using any higher-
order procedures) and also by using map and recursion.
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Exercise 2.31: Abstract your answer to Exercise 2.30 to produce a

procedure tree-map with the property that square-tree could be
defined as

(define (square-tree tree) (tree-map square tree))

Exercise 2.32: We can represent a set as a list of distinct elements,
and we can represent the set of all subsets of the set as a list of
lists. For example, if the setis (1 2 3), then the set of all subsets is
(() (3) (2) (2 3) (1) (1 3) (12) (12 3)). Complete the
following definition of a procedure that generates the set of subsets
of a set and give a clear explanation of why it works:

(define (subsets s)
(if (null? s)
(list nil)
(let ((rest (subsets (cdr s))))
(append rest (map (??7) rest)))))

2.2.3 Sequences as Conventional Interfaces

In working with compound data, we've stressed how data abstraction per-
mits us to design programs without becoming enmeshed in the details of
data representations, and how abstraction preserves for us the flexibility to
experiment with alternative representations. In this section, we introduce
another powerful design principle for working with data structures—the
use of conventional interfaces.

In Section 1.3 we saw how program abstractions, implemented as
higher-order procedures, can capture common patterns in programs that
deal with numerical data. Our ability to formulate analogous operations
for working with compound data depends crucially on the style in which
we manipulate our data structures. Consider, for example, the following
procedure, analogous to the count-leaves procedure of Section 2.2.2,
which takes a tree as argument and computes the sum of the squares of
the leaves that are odd:

(define (sum-odd-squares tree)
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(cond ((null? tree) 0)
((not (pair? tree))
(if (odd? tree) (square tree) 0))
(else (+ (sum-odd-squares (car tree))
(sum-odd-squares (cdr tree))))))

On the surface, this procedure is very different from the following one,
which constructs a list of all the even Fibonacci numbers Fib(k), where k is
less than or equal to a given integer n:

(define (even-fibs n)
(define (next k)
(if (> k n)
nil
(let (
(if

(f (fib k)))

(even? f)

(cons f (next (+ k 1)))
(next (+ k 1))))))
(next 0))

Despite the fact that these two procedures are structurally very different,
a more abstract description of the two computations reveals a great deal of
similarity. The first program

e enumerates the leaves of a tree;

« filters them, selecting the odd ones;

» squares each of the selected ones; and

e accumulates the results using +, starting with 0.

The second program
e enumerates the integers from 0 to 7;
e computes the Fibonacci number for each integer;
« filters them, selecting the even ones; and
e accumulates the results using cons, starting with the empty list.

A signal-processing engineer would find it natural to conceptualize these
processes in terms of signals flowing through a cascade of stages, each of
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which implements part of the program plan, as shown in Figure 2.7. In
sum-odd-squares, we begin with an enumerator, which generates a “sig-
nal” consisting of the leaves of a given tree. This signal is passed through a
filter, which eliminates all but the odd elements. The resulting signal is in
turn passed through a map, which is a “transducer” that applies the square
procedure to each element. The output of the map is then fed to an accu-
mulator, which combines the elements using +, starting from an initial 0.
The plan for even-fibs is analogous.

Unfortunately, the two procedure definitions above fail to exhibit this
signal-flow structure. For instance, if we examine the sum-odd-squares
procedure, we find that the enumeration is implemented partly by
the null? and pair? tests and partly by the tree-recursive structure of
the procedure. Similarly, the accumulation is found partly in the tests
and partly in the addition used in the recursion. In general, there are
no distinct parts of either procedure that correspond to the elements
in the signal-flow description. Our two procedures decompose the
computations in a different way, spreading the enumeration over the
program and mingling it with the map, the filter, and the accumulation.
If we could organize our programs to make the signal-flow structure
manifest in the procedures we write, this would increase the conceptual
clarity of the resulting code.

4 I\ 4 I\ 4 I\ 4 2\
enumerate: filter: map: accumulate:
tree leaves odd? square +, 0

G J G J G J o J

4 N 4 N 4 N 4 2
enumerate: map: filter: accumulate:
integers fib even? cons, ()

G J G J & J & J

Figure 2.7: The signal-flow plans for the procedures sum-odd-
squares (top) and even-fibs (bottom) reveal the commonality
between the two programes.
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Sequence Operations

The key to organizing programs so as to more clearly reflect the signal-flow
structure is to concentrate on the “signals” that flow from one stage in the
process to the next. If we represent these signals as lists, then we can use list
operations to implement the processing at each of the stages. For instance,
we can implement the mapping stages of the signal-flow diagrams using
the map procedure from Section 2.2.1:

(map square (list 1 2 3 4 5))
(1 49 16 25)

Filtering a sequence to select only those elements that satisfy a given
predicate is accomplished by

(define (filter predicate sequence)
(cond ((null? sequence) nil)
((predicate (car sequence))
(cons (car sequence)
(filter predicate (cdr sequence))))
(else (filter predicate (cdr sequence)))))

For example,
(filter odd? (list 1 2 3 4 5))
(1 35)
Accumulations can be implemented by
(define (accumulate op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(accumulate op initial (cdr sequence)))))

(accumulate + 0 (list 1 2 3 4 5))
15

(accumulate * 1 (list 1 2 3 4 5))
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120

(accumulate cons nil (list 1 2 3 4 5))
(1 2 3 4 5)

All that remains to implement signal-flow diagrams is to enumerate the
sequence of elements to be processed. For even-fibs, we need to generate
the sequence of integers in a given range, which we can do as follows:

(define (enumerate-interval low high)
(if (> low high)
nil
(cons low (enumerate-interval (+ low 1) high))))

(enumerate-interval 2 7)
(23456 7)

To enumerate the leaves of a tree, we can usel?

(define (enumerate-tree tree)
(cond ((null? tree) nil)
((not (pair? tree)) (list tree))
(else (append (enumerate-tree (car tree))
(enumerate-tree (cdr tree))))))

(enumerate-tree (list 1 (list 2 (list 3 4)) 5))
(1 2 3 45)

Now we can reformulate sum-odd-squares and even-fibs as in the
signal-flow diagrams. For sum-odd-squares, we enumerate the sequence
of leaves of the tree, filter this to keep only the odd numbers in the
sequence, square each element, and sum the results:

(define (sum-odd-squares tree)

14 This is, in fact, precisely the fringe procedure from Exercise 2.28. Here we've re-
named it to emphasize that it is part of a family of general sequence-manipulation
procedures.
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(accumulate +
0
(map square
(filter odd?
(enumerate-tree tree)))))

For even-fibs, we enumerate the integers from 0 to n, generate the Fi-
bonacci number for each of these integers, filter the resulting sequence to
keep only the even elements, and accumulate the results into a list:

(define (even-fibs n)
(accumulate cons
nil
(filter even?
(map fib
(enumerate-interval 0 n)))))
The value of expressing programs as sequence operations is that this

helps us make program designs that are modular, that is, designs that
are constructed by combining relatively independent pieces. We can
encourage modular design by providing a library of standard components
together with a conventional interface for connecting the components in
flexible ways.

Modular construction is a powerful strategy for controlling complexity
in engineering design. In real signal-processing applications, for exam-
ple, designers regularly build systems by cascading elements selected from
standardized families of filters and transducers. Similarly, sequence oper-
ations provide a library of standard program elements that we can mix and
match. For instance, we can reuse pieces from the sum-odd-squares and
even-fibs procedures in a program that constructs a list of the squares of
the first n 4 1 Fibonacci numbers:

(define (list-fib-squares n)
(accumulate cons
nil
(map square
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(map fib
(enumerate-interval 0 n)))))

(list-fib-squares 10)
(01149 2564 169 441 1156 3025)

We can rearrange the pieces and use them in computing the product of
the squares of the odd integers in a sequence:

(define (product-of-squares-of-odd-elements sequence)
(accumulate =*
1
(map square
(filter odd? sequence))))

(product-of-squares-of-odd-elements (list 1 2 3 4 5))
225

We can also formulate conventional data-processing applications in
terms of sequence operations. Suppose we have a sequence of personnel
records and we want to find the salary of the highest-paid programmer.
Assume that we have a selector salary that returns the salary of a record,
and a predicate programmer? that tests if a record is for a programmer.
Then we can write

(define (salary-of-highest-paid-programmer records)
(accumulate max
0
(map salary
(filter programmer? records))))

These examples give just a hint of the vast range of operations that can
be expressed as sequence operations.

15 Richard Waters (1979) developed a program that automatically analyzes traditional
Fortran programs, viewing them in terms of maps, filters, and accumulations. He
found that fully 90 percent of the code in the Fortran Scientific Subroutine Package
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Sequences, implemented here as lists, serve as a conventional interface
that permits us to combine processing modules. Additionally, when we
uniformly represent structures as sequences, we have localized the data-
structure dependencies in our programs to a small number of sequence
operations. By changing these, we can experiment with alternative repre-
sentations of sequences, while leaving the overall design of our programs
intact. We will exploit this capability in Section 3.5, when we generalize the
sequence-processing paradigm to admit infinite sequences.

Exercise 2.33: Fill in the missing expressions to complete the fol-
lowing definitions of some basic list-manipulation operations as
accumulations:

(define (map p sequence)
(accumulate (lambda (x y) (??)) nil sequence))

(define (append seql seq2)
(accumulate cons (??) (??)))

(define (length sequence)
(accumulate (??) 0 sequence))

Exercise 2.34: Evaluating a polynomial in x at a given value of x can
be formulated as an accumulation. We evaluate the polynomial

X"+ a1 x4+ a1x+ ag

using a well-known algorithm called Horner’s rule, which struc-
tures the computation as

(...(apx+ an1)x+...+a1)x+ ag

fits neatly into this paradigm. One of the reasons for the success of Lisp as a pro-
gramming language is that lists provide a standard medium for expressing ordered
collections so that they can be manipulated using higher-order operations. The
programming language APL owes much of its power and appeal to a similar choice.
In APL all data are represented as arrays, and there is a universal and convenient
set of generic operators for all sorts of array operations.
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In other words, we start with a,, multiply by x, add a,,_;, multiply
by x, and so on, until we reach ay.'®

Fill in the following template to produce a procedure that evaluates
a polynomial using Horner’s rule. Assume that the coefficients of
the polynomial are arranged in a sequence, from aq through a,,.

(define (horner-eval x coefficient-sequence)
(accumulate (lambda (this-coeff higher-terms) (??))
0

coefficient-sequence))

For example, to compute 1 + 3x + 5x° + x° at x = 2 you would
evaluate

(horner-eval 2 (list 1 3 050 1))

Exercise 2.35: Redefine count-leaves from Section 2.2.2 as an ac-
cumulation:

(define (count-leaves t)
(accumulate (??) (??7) (map (??) (??))))

Exercise 2.36: The procedure accumulate-n is similar to accumu-
late except that it takes as its third argument a sequence of
sequences, which are all assumed to have the same number of
elements. It applies the designated accumulation procedure to

16 According to Knuth 1981, this rule was formulated by W. G. Horner early in the nine-
teenth century, but the method was actually used by Newton over a hundred years
earlier. Horner’s rule evaluates the polynomial using fewer additions and multipli-
cations than does the straightforward method of first computing a, x", then adding
a,_1x""1, and so on. In fact, it is possible to prove that any algorithm for evaluat-
ing arbitrary polynomials must use at least as many additions and multiplications
as does Horner’s rule, and thus Horner’s rule is an optimal algorithm for polynomial
evaluation. This was proved (for the number of additions) by A. M. Ostrowski in a
1954 paper that essentially founded the modern study of optimal algorithms. The
analogous statement for multiplications was proved by V. Y. Pan in 1966. The book
by Borodin and Munro (1975) provides an overview of these and other results about
optimal algorithms.



combine all the first elements of the sequences, all the second
elements of the sequences, and so on, and returns a sequence
of the results. For instance, if s is a sequence containing four
sequences, ((1 2 3) (4 56) (7 8 9) (16 11 12)), then the
value of (accumulate-n + 0 s) should be the sequence (22 26
30). Fill in the missing expressions in the following definition of
accumulate-n:

(define (accumulate-n op init seqs)
(if (null? (car seqs))
nil
(cons (accumulate op init (??))
(accumulate-n op init (??2)))))

Exercise 2.37: Suppose we represent vectors v = (v;) as sequences
of numbers, and matrices m = (m;;) as sequences of vectors (the
rows of the matrix). For example, the matrix

is represented as the sequence ((1 2 3 4) (456 6) (6 7 8
9) ). With this representation, we can use sequence operations to
concisely express the basic matrix and vector operations. These
operations (which are described in any book on matrix algebra)
are the following:

(dot-product v w) returns the sum >;v; w;
(matrix-=+-vector m v) returns the vector t, where t; = > ;m;;v;
(matrix-*x-matrix m n)
(transpose m) returns the matrix n, where n;; = mj;

We can define the dot product as'’

17" This definition uses the extended version of map described in Footnote 12.
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returns the matrix p, where p;; = Xpm;ng;
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(define (dot-product v w)
(accumulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures for com-
puting the other matrix operations. (The procedure accumulate-n
is defined in Exercise 2.36.)

(define (matrix-x-vector m v)
(map (7?) m))

(define (transpose mat)
(accumulate-n (??) (??) mat))

(define (matrix-*-matrix m n)
(let ((cols (transpose n)))
(map (7?7) m)))

Exercise 2.38: The accumulate procedure is also known as
fold-right, because it combines the first element of the se-
quence with the result of combining all the elements to the right.
There is also a fold-left, which is similar to fold-right, except
that it combines elements working in the opposite direction:

(define (fold-left op initial sequence)
(define (iter result rest)
(if (null? rest)
result
(iter (op result (car rest))
(cdr rest))))
(iter initial sequence))

What are the values of

(fold-right / 1 (list 1 2 3))

(fold-left / 1 (list 1 2 3))
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(fold-right list nil (list 1 2 3))

(fold-left list nil (list 1 2 3))

Give a property that op should satisfy to guarantee that fold-right
and fold-left will produce the same values for any sequence.

Exercise 2.39: Complete the following definitions of reverse
(Exercise 2.18) in terms of fold-right and fold-left from
Exercise 2.38:

(define (reverse sequence)
(fold-right (lambda (x y) (??)) nil sequence))

(define (reverse sequence)
(fold-left (lambda (x y) (??)) nil sequence))

Nested Mappings

We can extend the sequence paradigm to include many computations that
are commonly expressed using nested loops.!® Consider this problem:
Given a positive integer 7, find all ordered pairs of distinct positive integers
i and j, where 1 < j < i < n, such that i 4 j is prime. For example, if 7 is 6,
then the pairs are the following:

i 2 3 4 4 5 6 6
j 1 2 1 3 2 1 5
i+j |3 5 5 7 7 7 1

A natural way to organize this computation is to generate the sequence of
all ordered pairs of positive integers less than or equal to n, filter to select
those pairs whose sum is prime, and then, for each pair (i, j) that passes
through the filter, produce the triple (i, j, i + j).

18 This approach to nested mappings was shown to us by David Turner, whose lan-
guages KRC and Miranda provide elegant formalisms for dealing with these con-
structs. The examples in this section (see also Exercise 2.42) are adapted from
Turner 1981. In Section 3.5.3, we'll see how this approach generalizes to infinite
sequences.
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Here is a way to generate the sequence of pairs: For each integer i <
n, enumerate the integers j < i, and for each such i and j generate the
pair (Z, j). In terms of sequence operations, we map along the sequence
(enumerate-interval 1 n). For each i in this sequence, we map along
the sequence (enumerate-interval 1 (- i 1)). Foreach j in this latter
sequence, we generate the pair (list i j). This gives us a sequence of
pairs for each i. Combining all the sequences for all the i (by accumulating

with append) produces the required sequence of pairs:!?

(accumulate append
nil
(map (lambda (i)
(map (lambda (j) (list i j))
(enumerate-interval 1 (- 1 1))))
(enumerate-interval 1 n)))

The combination of mapping and accumulating with append is so com-
mon in this sort of program that we will isolate it as a separate procedure:

(define (flatmap proc seq)
(accumulate append nil (map proc seq)))

Now filter this sequence of pairs to find those whose sum is prime. The
filter predicate is called for each element of the sequence; its argument is
a pair and it must extract the integers from the pair. Thus, the predicate to
apply to each element in the sequence is

(define (prime-sum? pair)
(prime? (+ (car pair) (cadr pair))))

Finally, generate the sequence of results by mapping over the filtered
pairs using the following procedure, which constructs a triple consisting
of the two elements of the pair along with their sum:

(define (make-pair-sum pair)
(list (car pair) (cadr pair) (+ (car pair) (cadr pair))))

19 we're representing a pair here as a list of two elements rather than as a Lisp pair.
Thus, the “pair” (i, j) is represented as (list i j),not (cons i j).
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Combining all these steps yields the complete procedure:
(define (prime-sum-pairs n)
(map make-pair-sum
(filter prime-sum?
(flatmap
(lambda (1)
(map (lambda (j) (list i j))
(enumerate-interval 1 (- 1 1))))
(enumerate-interval 1 n)))))

Nested mappings are also useful for sequences other than those that
enumerate intervals. Suppose we wish to generate all the permutations of
a set S; that is, all the ways of ordering the items in the set. For instance,
the permutations of {1, 2,3} are {1, 2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,1,2}
and {3,2,1}. Here is a plan for generating the permutations of S: For
each item x in S, recursively generate the sequence of permutations of
S — x,°% and adjoin x to the front of each one. This yields, for each x in
S, the sequence of permutations of S that begin with x. Combining these
sequences for all x gives all the permutations of S:*!

(define (permutations s)
(if (null? s) ; empty set?
(list nil) ; sequence containing empty set
(flatmap (lambda (x)
(map (lambda (p) (cons x p))
(permutations (remove x s))))

s)))

Notice how this strategy reduces the problem of generating permutations
of S to the problem of generating the permutations of sets with fewer ele-

20 The set S — x is the set of all elements of S, excluding x.

21 Semicolons in Scheme code are used to introduce comments. Everything from the
semicolon to the end of the line is ignored by the interpreter. In this book we don’t
use many comments; we try to make our programs self-documenting by using de-
scriptive names.
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ments than S. In the terminal case, we work our way down to the empty list,
which represents a set of no elements. For this, we generate (list nil),
which is a sequence with one item, namely the set with no elements. The
remove procedure used in permutations returns all the items in a given
sequence except for a given item. This can be expressed as a simple filter:

(define (remove item sequence)
(filter (lambda (x) (not (= x item)))
sequence))

Exercise 2.40: Define a procedure unique-pairs that, given an in-
teger n, generates the sequence of pairs (i, j)with1 < j < i < n.
Use unique-pairs to simplify the definition of prime-sum-pairs
given above.

Exercise 2.41: Write a procedure to find all ordered triples of dis-
tinct positive integers i, j, and k less than or equal to a given inte-
ger n that sum to a given integer s.

Exercise 2.42: The “eight-queens puzzle” asks how to place eight
queens on a chessboard so that no queen is in check from any
other (i.e., no two queens are in the same row, column, or diago-
nal). One possible solution is shown in Figure 2.8. One way to solve
the puzzle is to work across the board, placing a queen in each col-
umn. Once we have placed k — 1 queens, we must place the k"
queen in a position where it does not check any of the queens al-
ready on the board. We can formulate this approach recursively:
Assume that we have already generated the sequence of all possi-
ble ways to place k — 1 queens in the first k — 1 columns of the
board. For each of these ways, generate an extended set of posi-
tions by placing a queen in each row of the k' column. Now filter
these, keeping only the positions for which the queen in the k™
column is safe with respect to the other queens. This produces the
sequence of all ways to place k queens in the first k columns. By
continuing this process, we will produce not only one solution, but
all solutions to the puzzle.



Figure 2.8: A solution to the eight-queens puzzle.

We implement this solution as a procedure queens, which returns
a sequence of all solutions to the problem of placing n queens on
an nx n chessboard. Queens has an internal procedure queen-cols
that returns the sequence of all ways to place queens in the first k
columns of the board.

(define (queens board-size)
(define (queen-cols k)
(if (= k 0)
(list empty-board)
(filter
(lambda (positions) (safe? k positions))
(flatmap
(lambda (rest-of-queens)
(map (lambda (new-row)
(adjoin-position new-row
Kk
rest-of-queens))
(enumerate-interval 1 board-size)))
(queen-cols (- k 1))))))
(queen-cols board-size))
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In this procedure rest-of-queens is a way to place k — 1 queens
in the first k — 1 columns, and new- row is a proposed row in which
to place the queen for the k™ column. Complete the program
by implementing the representation for sets of board positions,
including the procedure adjoin-position, which adjoins a new
row-column position to a set of positions, and empty-board,
which represents an empty set of positions. You must also write
the procedure safe?, which determines for a set of positions,
whether the queen in the k™ column is safe with respect to the
others. (Note that we need only check whether the new queen is
safe—the other queens are already guaranteed safe with respect to
each other.)

Exercise 2.43: Louis Reasoner is having a terrible time doing
Exercise 2.42. His queens procedure seems to work, but it runs
extremely slowly. (Louis never does manage to wait long enough
for it to solve even the 6 x 6 case.) When Louis asks Eva Lu Ator
for help, she points out that he has interchanged the order of the
nested mappings in the flatmap, writing it as

(flatmap
(lambda (new-row)
(map (lambda (rest-of-queens)
(adjoin-position new-row k rest-of-queens))
(queen-cols (- k 1))))
(enumerate-interval 1 board-size))

Explain why this interchange makes the program run slowly.
Estimate how long it will take Louis’s program to solve the
eight-queens puzzle, assuming that the program in Exercise 2.42
solves the puzzle in time T.
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Figure 2.9: Designs generated with the picture language.

2.2.4 Example: A Picture Language

This section presents a simple language for drawing pictures that illustrates
the power of data abstraction and closure, and also exploits higher-order
procedures in an essential way. The language is designed to make it easy
to experiment with patterns such as the ones in Figure 2.9, which are com-
posed of repeated elements that are shifted and scaled.?? In this language,
the data objects being combined are represented as procedures rather than
as list structure. Just as cons, which satisfies the closure property, allowed
us to easily build arbitrarily complicated list structure, the operations in
this language, which also satisfy the closure property, allow us to easily
build arbitrarily complicated patterns.

22 The picture language is based on the language Peter Henderson created to con-
struct images like M.C. Escher’s “Square Limit” woodcut (see Henderson 1982). The
woodcut incorporates a repeated scaled pattern, similar to the arrangements drawn
using the square-1limit procedure in this section.
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The picture language

When we began our study of programming in Section 1.1, we emphasized
the importance of describing a language by focusing on the language’s
primitives, its means of combination, and its means of abstraction. We'll
follow that framework here.

i

Figure 2.10: Images produced by the wave painter, with respect to
four different frames. The frames, shown with dotted lines, are not
part of the images.

Part of the elegance of this picture language is that there is only one kind
of element, called a painter. A painter draws an image that is shifted and
scaled to fit within a designated parallelogram-shaped frame. For exam-
ple, there’s a primitive painter we’ll call wave that makes a crude line draw-
ing, as shown in Figure 2.10. The actual shape of the drawing depends on
the frame—all four images in figure 2.10 are produced by the same wave
painter, but with respect to four different frames. Painters can be more
elaborate than this: The primitive painter called rogers paints a picture of
MIT’s founder, William Barton Rogers, as shown in Figure 2.11.23 The four

23 william Barton Rogers (1804-1882) was the founder and first president of MIT. A
geologist and talented teacher, he taught at William and Mary College and at the
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images in figure 2.11 are drawn with respect to the same four frames as the
wave images in figure 2.10.

To combine images, we use various operations that construct new
painters from given painters. For example, the beside operation takes
two painters and produces a new, compound painter that draws the first
painter’s image in the left half of the frame and the second painter’s image

University of Virginia. In 1859 he moved to Boston, where he had more time for
research, worked on a plan for establishing a “polytechnic institute,” and served as
Massachusetts’s first State Inspector of Gas Meters.

When MIT was established in 1861, Rogers was elected its first president. Rogers
espoused an ideal of “useful learning” that was different from the university educa-
tion of the time, with its overemphasis on the classics, which, as he wrote, “stand
in the way of the broader, higher and more practical instruction and discipline of
the natural and social sciences.” This education was likewise to be different from
narrow trade-school education. In Rogers’s words:

The world-enforced distinction between the practical and the scientific
worker is utterly futile, and the whole experience of modern times has
demonstrated its utter worthlessness.

Rogers served as president of MIT until 1870, when he resigned due to ill health.
In 1878 the second president of MIT, John Runkle, resigned under the pressure of a
financial crisis brought on by the Panic of 1873 and strain of fighting off attempts
by Harvard to take over MIT. Rogers returned to hold the office of president until
1881.

Rogers collapsed and died while addressing MIT’s graduating class at the commen-
cement exercises of 1882. Runkle quoted Rogers’s last words in a memorial address
delivered that same year:

“As I stand here today and see what the Institute is, ... I call to mind the
beginnings of science. I remember one hundred and fifty years ago Stephen
Hales published a pamphlet on the subject of illuminating gas, in which he
stated that his researches had demonstrated that 128 grains of bituminous
coal - ” “Bituminous coal,” these were his last words on earth. Here he bent
forward, as if consulting some notes on the table before him, then slowly
regaining an erect position, threw up his hands, and was translated from the
scene of his earthly labors and triumphs to “the tomorrow of death,” where
the mysteries of life are solved, and the disembodied spirit finds unending
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in the right half of the frame. Similarly, below takes two painters and
produces a compound painter that draws the first painter’s image below
the second painter’s image. Some operations transform a single painter
to produce a new painter. For example, flip-vert takes a painter and
produces a painter that draws its image upside-down, and flip-horiz
produces a painter that draws the original painter’s image left-to-right
reversed.

Figure 2.11: Images of William Barton Rogers, founder and first
president of MIT, painted with respect to the same four frames as
in Figure 2.10 (original image from Wikimedia Commons).

Figure 2.12 shows the drawing of a painter called wave4 that is built up in
two stages starting from wave:

satisfaction in contemplating the new and still unfathomable mysteries of
the infinite future.

In the words of Francis A. Walker (MIT’s third president):
All his life he had borne himself most faithfully and heroically, and he died

as so good a knight would surely have wished, in harness, at his post, and in
the very part and act of public duty.
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(define wave2 (beside wave (flip-vert wave)))
(define waved4 (below wave2 wave2))

iy wz v
VT Y

Figure 2.12: Creating a complex figure, starting from the wave
painter of Figure 2.10.

In building up a complex image in this manner we are exploiting the fact
that painters are closed under the language’s means of combination. The
beside or below of two painters is itself a painter; therefore, we can use it
as an element in making more complex painters. As with building up list
structure using cons, the closure of our data under the means of combina-
tion is crucial to the ability to create complex structures while using only a
few operations.

Once we can combine painters, we would like to be able to abstract typ-
ical patterns of combining painters. We will implement the painter opera-
tions as Scheme procedures. This means that we don’t need a special ab-
straction mechanism in the picture language: Since the means of combina-
tion are ordinary Scheme procedures, we automatically have the capability
to do anything with painter operations that we can do with procedures. For
example, we can abstract the pattern in wave4 as

(define (flipped-pairs painter)
(let ((painter2 (beside painter (flip-vert painter))))
(below painter2 painter2)))

and define wave4 as an instance of this pattern:

(define waved4 (flipped-pairs wave))
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Figure 2.13: Recursive plans for right-split and corner-split.

We can also define recursive operations. Here’s one that makes painters
split and branch towards the right as shown in Figure 2.13 and Figure 2.14:
(define (right-split painter n)
(i1f (= n Q)
painter
(let ((smaller (right-split painter (- n 1))))
(beside painter (below smaller smaller)))))
We can produce balanced patterns by branching upwards as well as to-
wards the right (see Exercise 2.44, Figure 2.13 and Figure 2.14):
(define (corner-split painter n)
(i1f (= n Q)
painter
(let ((up (up-split painter (- n 1)))
(right (right-split painter (- n 1))))
(let ((top-left (beside up up))
(bottom-right (below right right))
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(corner (corner-split painter (- n 1))))
(beside (below painter top-left)
(below bottom-right corner))))))

A
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Figure 2.14: The recursive operations right-split and corner-
split applied to the painters wave and rogers. Combining four
corner-split figures produces symmetric square-1imit designs
as shown in Figure 2.9.
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By placing four copies of a corner-split appropriately, we obtain a pat-
tern called square-1imit, whose application to wave and rogers is shown
in Figure 2.9:

(define (square-limit painter n)
(let ((quarter (corner-split painter n)))
(let ((half (beside (flip-horiz quarter) quarter)))
(below (flip-vert half) half))))

Exercise 2.44: Define the procedure up-split used by corner-
split. Itis similarto right-split, except thatit switches the roles
of below and beside.

Higher-order operations

In addition to abstracting patterns of combining painters, we can work at
a higher level, abstracting patterns of combining painter operations. That
is, we can view the painter operations as elements to manipulate and can
write means of combination for these elements—procedures that take
painter operations as arguments and create new painter operations.

For example, flipped-pairs and square-limit each arrange four
copies of a painter’s image in a square pattern; they differ only in how they
orient the copies. One way to abstract this pattern of painter combination
is with the following procedure, which takes four one-argument painter
operations and produces a painter operation that transforms a given
painter with those four operations and arranges the results in a square. T1,
tr, bl, and br are the transformations to apply to the top left copy, the top
right copy, the bottom left copy, and the bottom right copy, respectively.

(define (square-of-four tl tr bl br)
(lambda (painter)
(let ((top (beside (tl painter) (tr painter)))
(bottom (beside (bl painter) (br painter))))
(below bottom top))))
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Then flipped-pairs can be defined in terms of square-of-four as fol-

lows:24

(define (flipped-pairs painter)
(let ((combine4 (square-of-four identity flip-vert
identity flip-vert)))
(combine4 painter)))
and square-1imit can be expressed as
(define (square-limit painter n)
(let ((combined4 (square-of-four flip-horiz identity
rotatel80 flip-vert)))
(combine4 (corner-split painter n))))
Exercise 2.45: Right-split and up-split can be expressed as in-
stances of a general splitting operation. Define a procedure split
with the property that evaluating
(define right-split (split beside below))
(define up-split (split below beside))
produces procedures right-split and up-split with the same
behaviors as the ones already defined.

Frames

Before we can show how to implement painters and their means of com-
bination, we must first consider frames. A frame can be described by three
vectors—an origin vector and two edge vectors. The origin vector specifies
the offset of the frame’s origin from some absolute origin in the plane, and
the edge vectors specify the offsets of the frame’s corners from its origin. If

24 Equivalently, we could write
(define flipped-pairs
(square-of-four identity flip-vert identity flip-vert))

25 Rotatel80 rotates a painter by 180 degrees (see Exercise 2.50). Instead of
rotatel80 we could say (compose flip-vert flip-horiz), using the compose
procedure from Exercise 1.42.



186

the edges are perpendicular, the frame will be rectangular. Otherwise the
frame will be a more general parallelogram.

Figure 2.15 shows a frame and its associated vectors. In accordance with
data abstraction, we need not be specific yet about how frames are rep-
resented, other than to say that there is a constructor make - frame, which
takes three vectors and produces a frame, and three corresponding selec-
torsorigin-frame, edgel-frame, and edge2-frame (see Exercise 2.47).

frame

frame
edge2 edgel
vector vector
frame
origin (0, 0) point on

vector  display screen

Figure 2.15: A frame is described by three vectors — an origin and
two edges.

We will use coordinates in the unit square (0 < x, y < 1) to specify images.
With each frame, we associate a frame coordinate map, which will be used
to shift and scale images to fit the frame. The map transforms the unit
square into the frame by mapping the vector v = (x, y) to the vector sum

Origin(Frame) 4 x - Edge;(Frame) + y - Edge,(Frame)

For example, (0, 0) is mapped to the origin of the frame, (1, 1) to the vertex
diagonally opposite the origin, and (0.5, 0.5) to the center of the frame. We
can create a frame’s coordinate map with the following procedure:*°

26 Frame-coo rd-map uses the vector operations described in Exercise 2.46 below,
which we assume have been implemented using some representation for vectors.
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(define (frame-coord-map frame)
(lambda (v)

(add-vect
(origin-frame frame)
(add-vect (scale-vect (xcor-vect v)

(edgel-frame frame))
(ycor-vect v)

(edge2-frame frame))))))

(scale-vect

Observe that applying frame-coord-map to a frame returns a procedure
that, given a vector, returns a vector. If the argument vector is in the unit
square, the result vector will be in the frame. For example,

((frame-coord-map a-frame) (make-vect 0 0))
returns the same vector as
(origin-frame a-frame)

Exercise 2.46: A two-dimensional vector v running from the
origin to a point can be represented as a pair consisting of an
x-coordinate and a y-coordinate. Implement a data abstraction
for vectors by giving a constructor make-vect and corresponding
selectors xcor-vect and ycor-vect. In terms of your selectors
and constructor, implement procedures add-vect, sub-vect, and
scale-vect that perform the operations vector addition, vector
subtraction, and multiplying a vector by a scalar:

(x1, ¥1) + (x2, ¥2) = (%1 + X2, Y1 + 2)
(x1, y1) — (X2, ¥2) = (x1 — X2, y1 — ¥2)
s-(x,y)=1(sx,sy)

Exercise 2.47: Here are two possible constructors for frames:

(define (make-frame origin edgel edge2)
(list origin edgel edge2))

Because of data abstraction, it doesn’t matter what this vector representation is, so
long as the vector operations behave correctly.
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(define (make-frame origin edgel edge2)
(cons origin (cons edgel edge2)))

For each constructor supply the appropriate selectors to produce
an implementation for frames.

Painters

A painter is represented as a procedure that, given a frame as argument,
draws a particular image shifted and scaled to fit the frame. That is to say,
if p is a painter and f is a frame, then we produce p’s image in f by calling p
with f as argument.

The details of how primitive painters are implemented depend on the
particular characteristics of the graphics system and the type of image to be
drawn. For instance, suppose we have a procedure draw-line that draws
a line on the screen between two specified points. Then we can create
painters for line drawings, such as the wave painter in Figure 2.10, from
lists of line segments as follows:?’

(define (segments->painter segment-list)
(lambda (frame)

(for-each

(lambda (segment)
(draw-1line
((frame-coord-map frame) (start-segment segment))
((frame-coord-map frame) (end-segment segment))))

segment-list)))

The segments are given using coordinates with respect to the unit square.
For each segment in the list, the painter transforms the segment endpoints
with the frame coordinate map and draws a line between the transformed
points.

27 segments->painter uses the representation for line segments described in
Exercise 2.48 below. It also uses the for-each procedure described in Exercise 2.23.
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Representing painters as procedures erects a powerful abstraction bar-
rier in the picture language. We can create and intermix all sorts of primi-
tive painters, based on a variety of graphics capabilities. The details of their
implementation do not matter. Any procedure can serve as a painter, pro-
vided that it takes a frame as argument and draws something scaled to fit
the frame.?8

Exercise 2.48: A directed line segment in the plane can be
represented as a pair of vectors—the vector running from the
origin to the start-point of the segment, and the vector running
from the origin to the end-point of the segment. Use your vector
representation from Exercise 2.46 to define a representation
for segments with a constructor make-segment and selectors
start-segment and end-segment.

Exercise 2.49: Use segments->painter to define the following
primitive painters:
a. The painter that draws the outline of the designated frame.

b. The painter that draws an “X” by connecting opposite corners
of the frame.

c. The painter that draws a diamond shape by connecting the mid-
points of the sides of the frame.

d. The wave painter.

28 For example, the rogers painter of Figure 2.11 was constructed from a gray-level
image. For each point in a given frame, the rogers painter determines the point in
the image that is mapped to it under the frame coordinate map, and shades it ac-
cordingly. By allowing different types of painters, we are capitalizing on the abstract
data idea discussed in Section 2.1.3, where we argued that a rational-number rep-
resentation could be anything at all that satisfies an appropriate condition. Here
we're using the fact that a painter can be implemented in any way at all, so long as
it draws something in the designated frame. Section 2.1.3 also showed how pairs
could be implemented as procedures. Painters are our second example of a proce-
dural representation for data.
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Transforming and combining painters

An operation on painters (such as flip-vert or beside) works by creating
a painter that invokes the original painters with respect to frames derived
from the argument frame. Thus, for example, flip-vert doesn’t have to
know how a painter works in order to flip it—it just has to know how to turn
a frame upside down: The flipped painter just uses the original painter, but
in the inverted frame.

Painter operations are based on the procedure transform-painter,
which takes as arguments a painter and information on how to transform
a frame and produces a new painter. The transformed painter, when
called on a frame, transforms the frame and calls the original painter on
the transformed frame. The arguments to transform-painter are points
(represented as vectors) that specify the corners of the new frame: When
mapped into the frame, the first point specifies the new frame’s origin and
the other two specify the ends of its edge vectors. Thus, arguments within
the unit square specify a frame contained within the original frame.

(define (transform-painter painter origin cornerl corner2)
(lambda (frame)
(let ((m (frame-coord-map frame)))
(let ((new-origin (m origin)))

(painter

(make-frame new-origin
(sub-vect (m cornerl) new-origin)
(sub-vect (m corner2) new-origin)))))))

Here’s how to flip painter images vertically:

(define (flip-vert painter)
(transform-painter painter
(make-vect 0.0 1.0) ;new origin
(make-vect 1.0 1.0) ;newendofedgel
(make-vect 0.0 0.0))) ;newendofedge2
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Using transform-painter, we can easily define new transformations.
For example, we can define a painter that shrinks its image to the upper-
right quarter of the frame it is given:

(define (shrink-to-upper-right painter)
(transform-painter painter
(make-vect 0.5 0.5)
(make-vect 1.0 0.5)
(make-vect 0.5 1.0)))

Other transformations rotate images counterclockwise by 90 degrees?”

(define (rotate90 painter)
(transform-painter painter
(make-vect 1.0 0.0)
(make-vect 1.0 1.0)
)

(make-vect 0.0 0.0)))

or squash images towards the center of the frame:>"

(define (squash-inwards painter)
(transform-painter painter
(make-vect 0.0 0.0)
(make-vect 0.65 0.35)
(make-vect 0.35 0.65)))

Frame transformation is also the key to defining means of combining
two or more painters. The beside procedure, for example, takes two
painters, transforms them to paint in the left and right halves of an
argument frame respectively, and produces a new, compound painter.
When the compound painter is given a frame, it calls the first transformed
painter to paint in the left half of the frame and calls the second
transformed painter to paint in the right half of the frame:

29 Rotate90 is a pure rotation only for square frames, because it also stretches and
shrinks the image to fit into the rotated frame.

30 The diamond-shaped images in Figure 2.10 and Figure 2.11 were created with
squash-inwards applied to wave and rogers.
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(define (beside painterl painter2)
(let ((split-point (make-vect 0.5 0.0)))
(let ((paint-left
(transform-painter painterl
(make-vect 0.0 0.0)
split-point
(make-vect 0.0 1.0)))
(paint-right
(transform-painter painter2
split-point
(make-vect 1.0 0.0)
(make-vect 0.5 1.0))))
(Lambda (frame)
(paint-left frame)
(paint-right frame)))))

Observe how the painter data abstraction, and in particular the repre-
sentation of painters as procedures, makes beside easy to implement. The
beside procedure need not know anything about the details of the com-
ponent painters other than that each painter will draw something in its
designated frame.

Exercise 2.50: Define the transformation flip-horiz, which flips
painters horizontally, and transformations that rotate painters
counterclockwise by 180 degrees and 270 degrees.

Exercise 2.51: Define the below operation for painters. Below takes
two painters as arguments. The resulting painter, given a frame,
draws with the first painter in the bottom of the frame and with the
second painter in the top. Define below in two different ways—first
by writing a procedure that is analogous to the beside procedure
given above, and again in terms of beside and suitable rotation
operations (from Exercise 2.50).
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Levels of language for robust design

The picture language exercises some of the critical ideas we've introduced
about abstraction with procedures and data. The fundamental data ab-
stractions, painters, are implemented using procedural representations,
which enables the language to handle different basic drawing capabilities
in a uniform way. The means of combination satisfy the closure property,
which permits us to easily build up complex designs. Finally, all the tools
for abstracting procedures are available to us for abstracting means of com-
bination for painters.

We have also obtained a glimpse of another crucial idea about languages
and program design. This is the approach of stratified design, the notion
that a complex system should be structured as a sequence of levels that are
described using a sequence of languages. Each level is constructed by com-
bining parts that are regarded as primitive at that level, and the parts con-
structed at each level are used as primitives at the next level. The language
used at each level of a stratified design has primitives, means of combina-
tion, and means of abstraction appropriate to that level of detail.

Stratified design pervades the engineering of complex systems. For ex-
ample, in computer engineering, resistors and transistors are combined
(and described using a language of analog circuits) to produce parts such as
and-gates and or-gates, which form the primitives of a language for digital-
circuit design.3! These parts are combined to build processors, bus struc-
tures, and memory systems, which are in turn combined to form comput-
ers, using languages appropriate to computer architecture. Computers are
combined to form distributed systems, using languages appropriate for de-
scribing network interconnections, and so on.

As a tiny example of stratification, our picture language uses primitive
elements (primitive painters) that are created using a language that
specifies points and lines to provide the lists of line segments for
segments->painter, or the shading details for a painter like rogers. The

31 Section 3.3.4 describes one such language.
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bulk of our description of the picture language focused on combining
these primitives, using geometric combiners such as beside and
below. We also worked at a higher level, regarding beside and below
as primitives to be manipulated in a language whose operations, such
as square-of-four, capture common patterns of combining geometric
combiners.

Stratified design helps make programs robust, that is, it makes it likely
that small changes in a specification will require correspondingly small
changes in the program. For instance, suppose we wanted to change the
image based on wave shown in Figure 2.9. We could work at the lowest level
to change the detailed appearance of the wave element; we could work at
the middle level to change the way corner-split replicates the wave; we
could work at the highest level to change how square-limit arranges the
four copies of the corner. In general, each level of a stratified design pro-
vides a different vocabulary for expressing the characteristics of the system,
and a different kind of ability to change it.

Exercise 2.52: Make changes to the square limit of wave shown in
Figure 2.9 by working at each of the levels described above. In par-
ticular:

a. Add some segments to the primitive wave painter of Exercise
2.49 (to add a smile, for example).

b. Change the pattern constructed by corner-split (for example,
by using only one copy of the up-split and right-split im-
ages instead of two).

c. Modify the version of square-1imit that uses square-of-four
so as to assemble the corners in a different pattern. (For exam-
ple, you might make the big Mr. Rogers look outward from each
corner of the square.)

2.3 Symbolic Data

All the compound data objects we have used so far were constructed ulti-
mately from numbers. In this section we extend the representational ca-
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pability of our language by introducing the ability to work with arbitrary
symbols as data.

2.3.1 Quotation
If we can form compound data using symbols, we can have lists such as

(a b cd)
(23 45 17)
((Norah 12) (Molly 9) (Anna 7) (Lauren 6) (Charlotte 4))

Lists containing symbols can look just like the expressions of our lan-
guage:
(x (+ 23 45) (+ x 9))

(define (fact n) (if (=n 1) 1 (x n (fact (- n 1)))))

In order to manipulate symbols we need a new element in our language:
the ability to quote a data object. Suppose we want to construct the list
(a b). We can’t accomplish this with (1ist a b), because this expression
constructs a list of the values of a and b rather than the symbols themselves.
This issue is well known in the context of natural languages, where words
and sentences may be regarded either as semantic entities or as character
strings (syntactic entities). The common practice in natural languages is to
use quotation marks to indicate that a word or a sentence is to be treated
literally as a string of characters. For instance, the first letter of “John” is
clearly “].” If we tell somebody “say your name aloud,” we expect to hear
that person’s name. However, if we tell somebody “say ‘your name’ aloud,”
we expect to hear the words “your name.” Note that we are forced to nest
quotation marks to describe what somebody else might say.>?

32" Allowing quotation in a language wreaks havoc with the ability to reason about the
language in simple terms, because it destroys the notion that equals can be sub-
stituted for equals. For example, three is one plus two, but the word “three” is not
the phrase “one plus two.” Quotation is powerful because it gives us a way to build
expressions that manipulate other expressions (as we will see when we write an in-
terpreter in Chapter 4). But allowing statements in a language that talk about other
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We can follow this same practice to identify lists and symbols that are

to be treated as data objects rather than as expressions to be evaluated.
However, our format for quoting differs from that of natural languages in
that we place a quotation mark (traditionally, the single quote symbol ')
only at the beginning of the object to be quoted. We can get away with this
in Scheme syntax because we rely on blanks and parentheses to delimit
objects. Thus, the meaning of the single quote character is to quote the

next objec

t.33

Now we can distinguish between symbols and their values:

(define a 1)
(define b 2)
(list a b)
(12)

(list 'a 'b)
(a b)

(list 'a b)
(a 2)

Quotation also allows us to type in compound objects, using the conven-

tional printed representation for lists:>*

33

34

statements in that language makes it very difficult to maintain any coherent prin-
ciple of what “equals can be substituted for equals” should mean. For example, if
we know that the evening star is the morning star, then from the statement “the
evening star is Venus” we can deduce “the morning star is Venus.” However, given
that “John knows that the evening star is Venus” we cannot infer that “John knows
that the morning star is Venus.”

The single quote is different from the double quote we have been using to enclose
character strings to be printed. Whereas the single quote can be used to denote lists
or symbols, the double quote is used only with character strings. In this book, the
only use for character strings is as items to be printed.

Strictly, our use of the quotation mark violates the general rule that all compound
expressions in our language should be delimited by parentheses and look like
lists. We can recover this consistency by introducing a special form quote, which
serves the same purpose as the quotation mark. Thus, we would type (quote a)
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(car "(a b c))
a

(cdr "(a b c))
(b c)

In keeping with this, we can obtain the empty list by evaluating ’ (), and
thus dispense with the variable nil.

One additional primitive used in manipulating symbols is eq?, which
takes two symbols as arguments and tests whether they are the same.>°
Using eq?, we can implement a useful procedure called memq. This takes
two arguments, a symbol and a list. If the symbol is not contained in the
list (i.e., is not eq? to any item in the list), then memq returns false. Other-
wise, it returns the sublist of the list beginning with the first occurrence of
the symbol:

(define
(cond

memq item Xx)

(null? x) false)

(eq? item (car x)) x)
e

(
(
(
(else (memg item (cdr x)))))
For example, the value of
(memg ’'apple '(pear banana prune))
is false, whereas the value of

(memq 'apple '(x (apple sauce) y apple pear))

instead of ’'a, and we would type (quote (a b c)) instead of "(a b c). This is
precisely how the interpreter works. The quotation mark is just a single-character
abbreviation for wrapping the next complete expression with quote to form
(quote (expression)). This is important because it maintains the principle that
any expression seen by the interpreter can be manipulated as a data object. For
instance, we could construct the expression (car ’(a b c)), which is the same as
(car (quote (a b c))), byevaluating (list 'car (list 'quote '(a b c))).
35 We can consider two symbols to be “the same” if they consist of the same characters
in the same order. Such a definition skirts a deep issue that we are not yet ready to
address: the meaning of “sameness” in a programming language. We will return to

this in Chapter 3 (Section 3.1.3).
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is (apple pear).

Exercise 2.53: What would the interpreter print in response to
evaluating each of the following expressions?
(list 'a 'b 'c)
(list (list ’'george))
(cdr "((x1 x2) (yl y2)))
(cadr ’"((x1 x2) (yl y2)))
(pair? (car ’'(a short list)))
(memg 'red '((red shoes) (blue socks)))
(memq 'red ’'(red shoes blue socks))

Exercise 2.54: Two lists are said to be equal? if they contain equal
elements arranged in the same order. For example,

(equal? ’(this is a list) ’'(this is a list))
is true, but
(equal? ’'(this is a list) ’'(this (is a) list))

is false. To be more precise, we can define equal? recursively in
terms of the basic eq? equality of symbols by saying that a and b
are equal? if they are both symbols and the symbols are eq?, or
if they are both lists such that (car a) is equal? to (car b) and
(cdr a) isequal? to (cdr b). Using this idea, implement equal?
as a procedure.>°

Exercise 2.55: Eva Lu Ator types to the interpreter the expression
(car "abracadabra)

To her surprise, the interpreter prints back quote. Explain.

36 In practice, programmers use equal? to compare lists that contain numbers as
well as symbols. Numbers are not considered to be symbols. The question of
whether two numerically equal numbers (as tested by =) are also eq? is highly
implementation-dependent. A better definition of equal? (such as the one that
comes as a primitive in Scheme) would also stipulate that if a and b are both
numbers, then a and b are equal? if they are numerically equal.
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2.3.2 Example: Symbolic Differentiation

As an illustration of symbol manipulation and a further illustration of data
abstraction, consider the design of a procedure that performs symbolic
differentiation of algebraic expressions. We would like the procedure to
take as arguments an algebraic expression and a variable and to return the
derivative of the expression with respect to the variable. For example, if the
arguments to the procedure are ax® + bx + ¢ and x, the procedure should
return 2ax + b. Symbolic differentiation is of special historical significance
in Lisp. It was one of the motivating examples behind the development of a
computer language for symbol manipulation. Furthermore, it marked the
beginning of the line of research that led to the development of powerful
systems for symbolic mathematical work, which are currently being used
by a growing number of applied mathematicians and physicists.

In developing the symbolic-differentiation program, we will follow
the same strategy of data abstraction that we followed in developing the
rational-number system of Section 2.1.1. That is, we will first define a
differentiation algorithm that operates on abstract objects such a